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ABSTRACT 

INTRODUCTION: This work reports on the creation and use of a tool to verify 

compliance in java programming exercises. The solution is based on the hypothesis 

that computational reflection can provide a way to automatically assess the 

programing competences of students. The work reflects the concern to make students 

learning a programming language have practical activities in parallel to what they 

learn in theoretical classes. OBJECTIVE: Attesting the effectiveness of using 

computational reflection to automatically correct programming exercises. Provide 

the teacher with a tool to support the follow-up of practical activities. Provide 

students with immediate feedback on their learning, so as to encourage them to 

behave more autonomously. METHOD: A case study was carried out with two 

classes of a computer science course. They answered five practical programming 

exercises and their responses for each activity were collected in source code format, 

which were used as the basis of solutions, totaling 100 responses. A comparative 

analysis was made between the scores obtained through CodeTeacher and the scores 

assigned by a group of teachers. RESULTS: Comparing the evaluation in 

CodeTeacher and the scores assigned by teachers, the average between the pairs of 

evaluations was lower than the confidence level of significance established in three 

groups, which demonstrates that the automatic correction obtained an acceptable 

accuracy. CONCLUSION: The use of computational reflection techniques for 

assisted correction in programming classes can bring beneficial result. Teachers can 

optimize their work and have performance reports of their students. Students can also 

be benefited by having an immediate feedback, so they can perceive themselves 

capable of achieving the learning objectives defined by the teacher. 

1. Introduction 

Practical exercises are essential to the development of computational thinking. In 

programming classes, learning to code requires related knowledge, such as: notions of 

logic, programming techniques, correct use of syntax and resources of a programming 

language, and application of best practices in software development, among others. The 

evaluation of these issues requires a thorough analysis by the teacher, since it is 

necessary to review the code produced by the students to assess the knowledge 

acquired, usually materialized in the form of practical works [Prior 2003]. Due to the 

amount of details to be observed, individual monitoring is necessary for a more accurate 

learning [Tobar et al., 2001]. 

However, evaluating the student's knowledge from code analysis constitutes a 

challenge for programming teaching, especially when the classes are extensive and the 

number of classes per teacher too - a common reality in programming courses [Oliveira 

et al. 2015]. According to França et al. (2011), technical programming disciplines are 

extensive in Computing and Engineering courses. This reality ends up hampering, if not 

hindering, the evaluation capacity of the teacher, given the large volume of work to be 

corrected and the time restrictions for correction and delivery of scores [Nunes 2004], 

besides being a repetitive, laborious activity that little adds to the teacher. Because it 

causes an overload of activities to the teacher, such factors tend to affect the quality of 

assessments. 
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 According to França et al. (2011) this difficulty can lead to discouragement, 

sometimes impelling the class to dispersion. Given this difficulty, alternatives to 

optimize this process have arisen through the automation and execution of source code 

tests [Hollingsworth 1960, Ebrahimi 1994]. The attempt to replace the visual analysis 

and manual execution of programs brought to light tools of assisted correction of 

programming works. Peterson et al. (2015) consider the use of software metrics based 

on the student code a revolutionary strategy for teaching. However, although there has 

been a considerable evolution of these systems [Romli et al. 2010], according to 

Oliveira et al. (2015), there are still considerable shortcomings with regard to the 

effectiveness of these tools, especially in assessing whether the desired educational 

objectives have been achieved. For Ihantola et al. (2010), these systems need to evolve 

in the sense of providing greater direction from a pedagogical perspective.  

 The main objective of tis paper is attesting the effectiveness of using 

computational reflection to automatically correct programming exercises, to fulfill this 

purpose, this article presents a case study for an automatic source code analysis and 

evaluation tool, as an alternative for optimizing the teaching-learning of programming 

process. The tool chosen for this purpose is CodeTeacher [Santos et al. 2017], a 

software for automatic analysis and evaluation of source code. In order to assist the 

assessment of programming exercises made with the Java language, the tool enables 

automatic evaluation of Java classes, as well as support for the assignment of scores to 

the evaluated activities. In addition, it generates reports of the executed tests and assigns 

scores to the tested classes.  

 The main contribution of this work is to promote discussion in the educational 

computing community about teaching and learning programming and propose a solution 

to find new approaches for this challenge. In presenting evidence of using 

computational reflection as a key mechanism for evaluating novice students 

performance in programming, we believe to be encouraging the development of 

technologies that may be an auxiliary work tool to understand students' learning 

difficulties and guide decision making of teachers in the choice of teaching actions to 

improve learning, thus contributing to the progress of computational thinking. 

 The text is organized as follows: Section 2 lists the objectives of this work. In 

Section 3, we present the theoretical background needed to understand the mecanism, 

bringing related works and similar solutions. In Section 4, we present the CodeTeacher 

and describe the types of analysis that compose it. In Section 5, we explain the 

operation of the tool. Section 6 provides a case study to ascertain the viability of the 

tool. And finally, in Section 7, we conclude with the final considerations and future 

work. 

2. Theoretical Reference 

This section introduces the basic concepts, methods, strategies, tools and techniques 

already used for assessment of student programming competences. It also discusses the 

related works and its results. 

2.1. Automatic Evaluation Approaches 
According to Ala-Mutka (2005), the most used techniques for automatic correction of 

programs are static and dynamic analysis. Static analysis is an approach to automatic 

assessment of programming learning based on source code analysis. Through static 

analysis, it is possible to analyze effort, complexity, efficiency and quality of 

programming [Curtis et al. 1979b, Berry and Meekings 1985, Rahman et al. 2008]. 

Dynamic evaluation is an evaluation based on the correct and efficient execution of 
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programs. Oliveira et al. (2015), introduces the dynamic-static analysis for automatic 

assessment of source code. 

 Naude et al. (2010) propose a method for evaluating programs using graph 

similarities. The programs developed by students are normalized in abstract syntatic 

trees and the scores are assigned by linear regression based in previous solutions. The 

results indicated a high similarity of scores assigned by teacher in comparison with 

those obtained automatically, but only when the student get higher scores. 

 Oliveira et al. (2016) report an approach that combines Principal Component 

Analysis (PCA) algorithyms and clustering techniques to recognize examples of 

solutions in responses developed by students. The experiments led to a rubric scheme 

that requires a little assessment effort by teachers. 

 Benford et al. (1995) and Vujosevic-Janicic et al. (2013), published strategies 

combining testing techniques, analysis and prediction. The results of both works are 

very promising. 

 Estey and Coady (2016) presented BitFit, a submission tool for activities from 

which a predictive model was built based on classification binary to identify the 

probability of a student being failed. 

 Otero et al. (2016) proposed a set of software metrics based on the static analysis 

of student codes. The study verified that the metrics have a correlation with students' 

grades. 

2.2. Similar Solutions 
Among the many tools to support the practice of programming with the purposes of 

submission, execution and evaluation of exercises, we highlight ProgTest [De Souza et 

al. 2011], PCodigo [Oliveira et al. 2015], BOCA [Campos and Ferreira 2004, França et 

al. 2011] and MOJO [Chaves 2013]. 

ProgTest is an automated support system for evaluating submissions of 

programs written in Java. Along with the programs are also submitted their respective 

test cases. ProgTest compiles the student programs and submits them to the tests. 

PCodigo is a complement to the Virtual Learning Environment (VLE) Moodle 

[Moodle 2011] for mass execution and program analysis, developed in C language, but 

it is applicable to different programming languages. Integrated with Moodle, it receives 

solutions from programming activities submitted by students, executes them and issues 

evaluation reports for teachers. 

BOCA Online Contest Administrator is an internet system for exercise 

submission and online code correction. It is the current platform used in programming 

competitions promoted by the Brazilian Computer Society (SBC). 

MOJO is a tool that integrates the concept of Online Judges (OJ) [Kurnia et al. 

2001] to Moodle. It consists of a module that aims to assist the teacher in the process of 

preparing, submitting and correcting programming questions. 

The differential of CodeTeacher in relation to existing solutions, besides being 

focused on Java, is that it consists in giving more flexibility to the evaluation of the 

teacher, allowing a more holistic analysis. In addition to guiding evaluation through a 

pedagogical perspective [Ihantola et al. 2010]. It also has the characteristic of being 

extensible, that is, its modular architecture favors the inclusion of new features. 

Consequently, with the possibility of providing immediate feedback to the 

student, the tool has the potential to get more involved in this, since the students' 

awareness of their situation tends to cause a reaction towards better results. In addition 

to enabling greater transparency, making the evaluation process visual, exposing the 

results and reporting to all those interested in learning. 
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 For the teacher, there is also the possibility of perceiving the deficiencies of a 

class through the identification of recurrent errors in the same evaluation, as well as the 

possibility of a closer monitoring of the progress of the discipline, with greater clarity 

about the individual and collective income of the class. 

3. CodeTeacher 

CodeTeacher is a platform-independent desktop application based on static, dynamic 

and static dynamic analysis [Oliveira 2015]. It is a system for source code analysis by 

the configuration of pre-defined evaluation criteria. The application was made to accept 

projects in Java, regardless of the development IDE used, since it only needs that 

compiled classes (files with a .class extension) to be submitted to the tool. 

 CodeTeacher proposes to help teachers and students in the evaluation of 

programming exercises. To fulfill this purpose, some requirements were defined. These 

goals are listed as follows:  

• Providing the teacher with a tool to support the follow-up of practical activities;  

• Giving flexibility to the evaluation of the teacher, allowing a holistic analysis.  

• Guiding evaluation through a pedagogical perspective. 

• Being extensible. 

• Providing programming students with immediate feedback about their learning, 

so as to encourage them to behave more autonomously. 

 For automatic detection of nonconformities in code from the definition of 

criteria available to the teacher, it is used the reflection programming or 

metaprogramming [Horstmann 2000]. This paradigm provides the ability of a computer 

system to access information about itself to examine its structure, state, and 

representation, and to be able to self-modify its behavior at runtime. This functionality 

is provided by some programming languages, including Java. 
 The strategy adopted to evaluate the classes without changing the code developed 

by the students was to intercept the creation of objects and the invocation of methods on the 

test target class, verifying the occurrence of nonconformities and checking the return after 

its execution.   

 The current focus of using CodeTeacher concerns initial and intermediate 

programming disciplines. It is also important to note that the tool only covers practical 

coding works in Java, not embracing textual analysis of responses to exercises and 

subjective questions. 

 Four types of evaluation are possible, named as follows: structural analysis, 

behavioral analysis, standard export analysis and conceptual analysis. The following are 

the types of CodeTeacher analysis. 

3.1. Structural Analysis 
In this type of analysis, the static elements of the code are verified, such as the correct 

declaration of the attributes and methods of a class, and its modifiers can also be 

checked, as well as whether a given member is a class or instance. 

 Another possibility is the analysis of the use of inheritance through navigation 

by the hierarchy of classes implemented by the student. Similarly, this analysis allows 

us to verify whether or not a particular class implements a given interface. It is also 

possible to make the analysis more flexible considering only some elements in the 

evaluation. For example, it is possible to configure a criterion that evaluates whether 

there is a method in the defined scope that returns data and / or receives parameters of 

certain types, and does not need to enter the name of the method to be searched for. 
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 In order to make the student's implementation more flexible, without, however, 

harming the effectiveness of the evaluation, it is possible to use regular expressions, 

using wildcards in the specification of criteria. It is possible, for example, define that 

there must be a method whose name starts with a prefix such as "register ...". For this, 

the teacher would only need to enter the following expression in the method name: 

"register.*", where the asterisk (*) would mean any string. Similarly, it would be 

possible to verify the existence of a method with the suffix "?data", with the question 

mark corresponding to any character. Table 1 shows the predefined types of common 

errors in structural analysis. 

 

Error Description 

CLASS_NOT_FOUND A required class is not in the project 

PARAM_CLASS_NOT_FOUND Some class that is used as parameter is not in the project 

SUPERCLASS_NOT_FOUND A specified extended superclass is not found in the project 

METHOD_NOT_FOUND A method specified in the criteria is not declared in the 

class 

FIELD_NOT_FOUND A field specified in the criteria is not declared in the class 

CONSTRUCTOR_NOT_FOUND A specified constructor is not present in the class 

INTERFACE_NOT_IMPLEMENTED  A class should implement some interface 

BIN_NOT_FOUND The source folder with the compiled classes was not found 

FOLDER_NOT_FOUND The project folder is not in the specified directory 

METHOD_NOT_ABSTRACT  A method should be declared as abstract 

METHOD_NOT_FINAL  A method should be declared as final 

METHOD_NOT_FOUND A specified method should be declared 

METHOD_NOT_PRIVATE  A method should be declared with the private modifier 

METHOD_NOT_PUBLIC  A method should be declared with the public modifier 

METHOD_NOT_STATIC  A method should be declared with the static modifier 

METHOD_NOT_PROTECTED  A method should be declared with the protected modifier 

METHOD_MODIFIER_MISMATCH The method modifiers declared mismatches the criteria 

METHOD_NOT_RETURN The method return is not the same specified in the criteria 

Table 1. Types of structural error. 

3.2. Behavioral Analysis 
For Ala-Mutka (2005) and Rahman et al. (2008), fairness and functionality are 

important evaluation items. The behavioral analysis consists of attesting the correctness 

of the code from its functional testing in order to simulate the behavior of the program 

in a real environment or scenario. It is an analysis based on input / output that tests the 

services provided by an object, that is, verify the correct output of a program from 

inputs previously provided and compared with predicted results. The code is executed 

and the responses of the object to external stimuli are checked, so messages are passed 

to an object in order to find an expected response. The teacher models a set of cases to 

be evaluated and submits them to the evaluation of the tool and, through the 

combination of the provided inputs and the expected outputs, it is possible to infer the 

quality of the program with respect to its functionalities, to the requirements specified 

by the teacher. 

 An example of using this approach may be checking the values returned from 

invocation of methods by passing a list of pre-established parameters and defining the 

expected values that should be returned. It works like black-box tests, when values are 

entered and specific outcomes are expected, depending on the test case. No intervention 

in the implementation of the solution is made, the code is tested based only in its 

outcomes. 

3.3. Standard Output Analysis 
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In this type of analysis it is verified if the executed code performs the printing of some 

text in the standard output of the system (console). It is common in early programming 

disciplines to create programs that write data or messages to standard output. They are 

usually data resulting from calculations made by the application or even informational 

messages. Typically this information is presented in a textual way in a command line 

interface. The tool captures the standard output, interrupting the print flow and diverting 

it to a proxy that stores the printed content, and then checks whether what is printed by 

the student program is equivalent to the text defined in the evaluation criteria set by the 

teacher. It must inform the content to be printed in order for the equality comparison to 

be made and, in this case, the exact match between the terms compared is considered 

success. 

3.4. Conceptual analysis 
In this type of analysis, standards and metrics can be defined to be contemplated. This 

mechanism allows the evaluation of the application of Object Oriented Programming 

(OOP) concepts such as inheritance, polymorphism, degree of encapsulation, among 

others [Horstmann 2000]. In this way, it is possible to find out if there are abstract 

classes that are not extended or interfaces not implemented, for example. The use of 

polymorphism can be identified and evaluated considering, for example, the presence of 

overloaded and / or overwritten methods. Such factors can be framed in a gradation 

scale defined by the teacher. As an example, the level of encapsulation can be measured 

by configuring a minimum percentage of encapsulated members to be achieved. 

 Although not yet available in CodeTeacher, other concepts and metrics can be 

used in this type of analysis, such as degree of cohesion and coupling, as new metrics 

and concepts from Software Engineering can be added to the tool in addition to 

functionality, with the inclusion of plug-ins. 

4. Evaluation Steps 

All the details involving the total evaluation process are detailed in the following topics. 

The flow of activities is shown in Figure 1. 

 
Figure 1. Evaluation process 

 

 Figure 2 shows the first screen of the application, with all the options available. 

The sessions, menus and buttons are presented bellow. 

 

Selectiong the 

artifacts

Configuring 

criteria
Running tests Performance 

Report
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Figure 2. Application home 

4.1. Selecting artifacts 
This step indicates which elements will be chosen for evaluation. Assets are explicitly 

selected by the user, firstly by indicating which directories should be accessed to look 

for the code artifacts to be analyzed, being it possible to be, projects, classes, or class 

packages. This indication determines the scope of the assessment. The convention used 

by CodeTeacher to associate a particular set of code artifacts with a particular student is 

that all files contained in a folder belong to the same student. Therefore, it is 

recommended that there be a folder with the name of each student, because the name of 

the folder will serve as reference to identify the student. 

4.2. Setting Criteria 
Once the software elements have been selected, the items that will compose the 

evaluation are then created. Thus, a set of criteria must be informed by the teacher to be 

applied during the analysis. The criteria are defined using the graphical interface, where 

the evaluative items considered are indicated. The format of the criteria varies according 

to the type of analysis, but each criterion must have a value to compose the student's 

grade. The assessment of the criteria is established as weights are assigned according to 

the degree of importance considered by the evaluator. It is at this moment that the 

teacher feeds the system with his previous judgment of the expected competences of the 

student with the accomplishment of the practical activity in question, in the sense of 

reaching the established learning objectives. 

 Once the criteria have been created, it is possible to save them in a file for later 

use or editing, thus preventing the work of setting up all the criteria from being repeated 

in case of a later evaluation. Figure 3 shows the criteria configuration, note that the field 

name as “value” is the number of scores of the criteria. 
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         Figure 3. Criteria configuration 

4.3. Running tests 
The implementation strategy is defined by the teacher, in order to make the evaluation 

process flexible. The performance of the tests can be in mass or class to class, and can 

be changed later, so that it is possible to apply differentiated evaluations and focus on 

certain aspects, at the discretion of the teacher. Students' grades are calculated according 

to the total number of points obtained through the sum of all the criteria. It is considered 

that, before the start of the execution, each student has all points, but as irregularities are 

found in his code, the points corresponding to the criteria not met are debited from the 

total points of the student. Finally, the final grade is counted based on the student's 

percentage of correct answers. Figure 4 shows how the results are reported. 

 
    Figure 4. Execution of tests 
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4.4. Performance report 
After the completion of all the tests, comes the scores prediction phase. The results are 

tabulated and a performance report is generated showing the grades of the students in 

the class. Initially the report is presented in its summary form, containing a summary of 

the scores, with statistical information such as class average and standard deviation. 

However, it is possible to analyze individual performance by obtaining a detailed result 

of each student. Other visualization options are also available, such as an extract of the 

most committed types of errors, percentage of correctness, rate of recovery, among 

others. With this complementary information it is possible to identify generalized 

difficulties in the class and to plan strategies to remedy such deficiencies. 

 At this stage, there is also an option to export the resulting data to a spreadsheet, 

if it is necessary to manipulate such data for graphing, for example, or even to report to 

students about their performance. The generation of the file also serves as documentary 

evidence to indicate the evolution of the class in the course of the discipline taught. 

Figure 5 shows an individual performance summary. 

 
Figure 5. Individual performance summary 

5. Case Study 

A case study was performed to prove the effectiveness of CodeTeacher as a learning 

object. A comparative analysis was made between the grades obtained by CodeTeacher 

and the grades assigned by teachers from an actual school. A sample of responses to 

programming exercises questions from a regular group of computer science course 

students was selected to compose the test set. Four practical programming activities (A, 

B, C and D) were selected to compose the corpus of the experiment. For each activity, 

responses were collected in source code format, which were used as the basis of 

solutions, totaling 100 responses. 

 The responses were submitted to structural, behavioral, output and conceptual 

analysis, respectively. The final grade was the arithmetic mean among these scores. For 

each analysis, evaluative criteria were elaborated as model responses, which took into 

account aspects considered relevant in a student beginning programming, involving the 

basic use of the main Java elements, such as language syntax, procedural aspects and 

basic guiding resources to objects. The values of the criteria were assigned individually 

and arbitrarily by tree teachers. If there were divergences in the value attributions of 

each teacher, they were confronted and underwent a review process where the two 

discussed until reaching a consensus. 

 Subsequently, the answers were evaluated manually by the same tree teachers, 

who assigned grades on a scale 0-10. Each teacher received a checklist with the 

evaluative items identical to the criteria defined in the application. The teachers 

deliberately indicated each item as "Complied" or "Not complied" and the calculation of 

the grade was obtained from the percentage of complied items. This set of exercises 
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already evaluated composes the basis of comparison of the experiment. In this 

experiment we have two factors, the grade and the evaluators, and we hope that there is 

no significant effect of evaluators. 

 In order to investigate the influence of the evaluation method on the variation of 

the grades assigned, the One-way Analysis of Variance (ANOVA) [Rumsey, 2016] was 

adopted. The ANOVA is a statistical technique for analyzing data by comparing the 

means of subsets of the data, the data is sub-divided into groups based on a single 

classification factor. The dependent categorical variable considered was the evaluation 

author (the human teachers evaluation - named by their initials as EP, GA and PS - and 

the CodeTeacher evaluation - named as CT). The four evaluations were compared, and 

the goal was to verify the difference of grades with the control, CodeTeacher being the 

reference. 

 In order to identify the groups in which the difference was significant, the 

Tukey’s test [Rumsey, 2016] was performed. Tukey's test is a statistical method that 

compares all possible pairs of means to find means that are significantly different from 

each other. The results were compared according to their categories, that is, the 

evaluator responsible for each evaluation. 

 To determine whether any of the differences between the means are statistically 

significant, a significance level (denoted as α or alpha) of 0.05 was adopted. That 

indicates a 5% risk of concluding that a difference exists when there is no actual 

difference. To assess the hypothesis that the population means are all equal, we compare 

the p-value to our significance level. The p-value is the smallest familywise significance 

level at which a particular comparison will be declared statistically significant. 

• P-value ≤ α: The differences between some of the means are statistically 

significant  

• P-value > α: The differences between the means are not statistically significant 
 

Group Diff          Lower          Upper P-Value 

EP-CT   1,53 1,68 9,38  0,67 

GA-CT   1,57 1,71  9,42  0,92 

PS-CT  1,02 1,17  8,73  0,09 

GA-EP   3,58 1,84  9,12  0,22 

PS-EP  5,11 3,63  6,60  0,00 

PS-GA 5,47 3,98   6,96 0,00 

Table 2. Exercise A. 

 In Table 2, the p-values for the comparisons with CT are greater than the 

significance level, wich confirms the hypothesis and conclude that all of population 

means are equal. Considering only the p-value of the pairs of means wich evaluations 

were made by human teachers, it is possible to see that all the means are less than the 

confidence level adopted (p-value < 0,05), except in the GA-EP means comparison. So, 

we can say that the means of the sample group (GA - EP) are sigificantly equivalent. 
 

Group Diff          Lower          Upper P-Value 

EP-CT 3,17 4,68 8,91  0,01 

GA-CT 2,79 3,39 8,62  0,03 

PS-CT 2,44 4,41  9,34  0,08 

GA-EP 3,62 3,58  4,81  0,04 

PS-EP 2,41 3,38  7,16  0,07 

PS-GA 1,04 5,08  9,85  0,81 

Table 3. Exercise B. 

 According to Table 3, it is possible to say that there is at least two evaluators 

with evaluations significantly diferente from CT, for the p-value is lower than the 
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confidence level. One can see that only the confidence interval for GA-EP is greater 

than 0,05. Thus, it appears that EP and GA do not differ among themselves, but are 

different from CT. 

Group Diff  Lower   Upper P-Value 

EP-CT 2,44 3,58 8,49 0,01 

GA-CT   2,44 3,58 8,49 0,01 

PS-CT  2,53 1,04 9,31 0,03 

GA-EP   4,93 3,58 8,74 0,01 

PS-EP  2,54 1,04 9,24 0,02 

PS-GA  2,54 1,04 9,23 0,02 

Table 4. Exercise C. 

 Analyzing the results of Table 4, it was possible to see that the p-value is lower 

than 0,05, which means that the ANOVA p-value for each evaluation is highly 

significant, indicating the difference between them. From this, we concluded that the 

average performance of the students are significantly different. Also in the table we see 

that the differences between the means of the teachers are statistically significant too. 
 

Group Diff          Lower          Upper P-Value 

EP-CT  0,86 0,98 9,89  0,08 

GA-CT   0,92  6,05 10,00 0,09 

PS-CT 0,00  6,76 9,67  0,33 

GA-EP   0,85  4,05 9,74  0,34 

PS-EP  0,86  4,98   9,83  0,33 

PS-GA  0,09  4,72   10,00  0,09 

Table 5. Exercise D. 

 In Table 5, comparing the evaluation scores, the average between the pairs of 

evaluations is greater than the confidence level of significance established in three 

groups. This leads us to conclude that the average performance of students (GA-CT), 

(PS-CT) and (PS-GA) are significantly equivalent. 

 Thus, it is concluded that the average performance of the students was 

significantly equivalent in tree of the analyzed evaluation, since the ANOVA was 

significant and the Tukey test demonstrated that all evaluations do not differ, with the 

exception of the comparison of exercise C. It demonstrates the feasibility of using the 

tool with a considerable degree of assertiveness. Some aspects were also observed on 

the results, such as: the evaluations were more homogeneous in exercise D. This 

similarity also increased when the grades were closer to 10,0. 

6. Conclusions 

CodeTeacher, a proposal of automated aid to the teaching of programming focused on 

the increase of teacher productivity was presented. In order to give a greater dynamism 

to the educational process through the systematic use of the tool, it is expected to reduce 

the time to correct the work, thus leaving the teacher free to dedicate himself to other 

teaching practices, such as elaboration of activities, planning of classes and preparation 

of didactic material, besides accompaniment of students. 

 A study case was conducted to evaluate the performance among students and 

teachers. The evaluation was done through the use of the tool to obtain the data related 

to its use. In order to identify if the evaluation method (automated or manual) factor 

exerts some influence on the students performance evaluation, a difference test among 

population means was applied for paired data from the same population. The results 

showed that, when compared to human evaluation, CodeTeacher achieved similar 

outcomes, since the difference was considered insignificant in most of the tests. 
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 As future work, we intend to develop a web interface to deploy the application 

as an online service available on the web, as well as its integration with mobile 

platforms, and the development of complementary functionalities that can bring value to 

the tool, such as the ability to detect plagiarisms. There is also the possibility of 

attaching the tool to an VLE (Virtual Learning Environment) such as Moodle. 
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