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ABSTRACT
Semantic segmentation has been successfully explored in biological
studies to handle various applications, such as identifying wounds.
This study explores two image segmentation approaches to identify
mice wounds, specifically the U-Net and Random Forest algorithms.
The latter was combined with features extracted from the first two
layers of VGG16, which was used as a feature extractor. Experi-
ments were performed with a real dataset developed by the Pain,
Neuropathy, and Inflammation Laboratory at the State University
of Londrina with the approval of the University Ethics Committee
on Animal Research and Welfare. The experimental results were
promising, showing that both alternatives can provide accurate
predictions for most images regarding FScore and IoU evaluation
measures. Statistical tests were also applied, showing that U-Net
obtained statistically better results with an average FScore of 0.72
and IoU of 0.58.

KEYWORDS
Semantic Segmentation, wound identification, U-Net, Random For-
est.

1 INTRODUCTION
Image Segmentation is the process of dividing an image into re-
gions [1], often the first step in the image analysis process. It high-
lights the portion of the image with relevant information, called the
Region of Interest (ROI). However, different portions of images can
reference the same object (parts), or the same objects can appear
in different regions (plurality), thus having different ROI with the
same aspect of meaning. For these portions to be understood as the
same object or parts of the same region, the Semantic Segmentation
adds meaning to the pixel [2], resulting in a pixel-wise classifica-
tion problem. Badrinarayanan et al. [3] brings up a series of recent
studies exploring pixel labeling classification.

This pixel-level precision enables machines to discern objects,
their boundaries, and their relationships within the scene. The

applications of Semantic Segmentation are wide-ranging, from au-
tonomous vehicles navigating complex environments to medical
image analysis for disease detection and treatment planning, as
well as in augmented reality, where it enriches user experiences
by accurately identifying and interacting with objects in the real
world. Moreover, it facilitates the development of advanced Artifi-
cial Intelligence (AI) systems for tasks like object recognition, scene
understanding, and even human-computer interaction.

In studies in the biological area, semantic segmentation has
been used in skin wounds and is an important research area for
evaluating the healing process in animals and humans [4]. The
use of Machine Learning (ML) algorithms has been shown to be
effective in identifying and delimiting wound areas, allowing more
accurate and objective analysis of the healing process. Strategies
have been proposed using traditional ML and Deep Learning (DL)
algorithms [5].

Although DL models have achieved remarkable results across
various domains, it is crucial to acknowledge that they can be com-
putationally intensive and time-consuming, mainly when working
with large datasets and complex architectures. This computational
burden can hinder rapid prototyping and model iteration. Hence,
exploring alternatives with traditional ML algorithms remains valu-
able. Traditional methods, such as Decision Trees (DTs), Support
VectorMachines (SVMs), and Random Forests (RF), often offer faster
training times, better interpretability, and require fewer computa-
tional resources. Moreover, they can be highly effective for tasks
with limited data or when the interpretability of results is a priority.
In many practical scenarios, a judicious blend of DL and traditional
ML algorithms can yield efficient and effective solutions, balancing
performance and computational demands.

This study explores Semantic Segmentation to solve a mice
wound pixel classification problem. Experiments were carried out
with two different approaches: i) a DL architecture - U-Net, and
ii) a traditional ML algorithm - Random Forest (RF) using latent
representations of a pre-trained Convolutional Neural Network
(Visual Geometry Group - VGG [6]). The image dataset used in the
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experiments is composed of wounds in mice, generated by the Lab-
oratory of Research in Pain, Neuropathy and Inflammation of the
State University of Londrina (UEL).

This article is organized as follows: Section 2 presents the theo-
retical concepts necessary for understanding the work and related
works found in the literature; Section 3 describes the proposed
methodology for comparing and evaluating the segmentation al-
gorithms; Section 4 presents the experimental results; and finally,
Section 5 presents conclusions and suggestions for future work.

2 BACKGROUND
Semantic segmentation is a vital aspect of computer vision, involv-
ing identifying and classifying individual pixels within an image.
Its applications span diverse fields like autonomous driving and
medical image analysis. The conventional methods for this task
demand substantial amounts of meticulously annotated data, a time-
consuming and expensive process. Most semantic segmentation
networks commonly utilize cross-entropy as their loss function
and assess network performance using the intersection-over-union
(IoU) metric [7].

2.1 U-Net
The U-Net algorithm is a Convolutional Neural Network (CNN)
architecture developed for image segmentation, which has been
shown to be efficient in several applications in the medical con-
text [8, 9]. The network design consists of a symmetric network
with descending pooling layers to encode low-level information
into a high-dimensional representation, ascending convolution (or
transposed convolution), and up-sampling layers to reconstruct the
segmented image.

U-Net: Convolutional Networks for Biomedical Image Segmentation 235

Fig. 1. U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue
box corresponds to a multi-channel feature map. The number of channels is denoted
on top of the box. The x-y-size is provided at the lower left edge of the box. White
boxes represent copied feature maps. The arrows denote the different operations.

as input. First, this network can localize. Secondly, the training data in terms
of patches is much larger than the number of training images. The resulting
network won the EM segmentation challenge at ISBI 2012 by a large margin.

Obviously, the strategy in Ciresan et al. [2] has two drawbacks. First, it is quite
slow because the network must be run separately for each patch, and there is a lot
of redundancy due to overlapping patches. Secondly, there is a trade-off between
localization accuracy and the use of context. Larger patches require more max-
pooling layers that reduce the localization accuracy, while small patches allow
the network to see only little context. More recent approaches [11,4] proposed a
classifier output that takes into account the features from multiple layers. Good
localization and the use of context are possible at the same time.

In this paper, we build upon a more elegant architecture, the so-called “fully
convolutional network” [9]. We modify and extend this architecture such that it
works with very few training images and yields more precise segmentations; see
Figure 1. The main idea in [9] is to supplement a usual contracting network by
successive layers, where pooling operators are replaced by upsampling operators.
Hence, these layers increase the resolution of the output. In order to localize, high
resolution features from the contracting path are combined with the upsampled
output. A successive convolution layer can then learn to assemble a more precise
output based on this information.

Figure 1: U-Net architecture. The half of the figure (encoder)
reduces the original images to some latent representation.
The second half (decoder) reconstructs images using latent
features to classify pixel labels. Figure from Ronneberger
et al. [10].

The technique of concatenating information from the decoding
layer with the corresponding encoding layer allows the combina-
tion of low and high-level information, which provides a more

accurate representation of the original image. Figure 1 shows the U-
Net architecture, composed by a encoder and a decoder. The encoder
is usually a pre-trained classification network like VGG/ResNet
models applying convolution blocks followed by a maxpool down-
sampling to encode the input image into feature representation at
multiple levels.

The decoder is the second part of the architecture. The goal is
to semantically project the discriminative (latent) features with
lower resolution learned by the encoder onto the pixel space to
get a dense classification. The decoder consists of upsampling and
concatenation operations followed by regular convolutions. U-Net
also uses ReLU-like activation functions for all convolutional layers
and a sigmoid activation layer at the end to produce the binary
output of the segmentation.

2.2 Random Forest
Random Forest (RF) [11] is a traditional ML algorithm that uses
multiple Decision Trees (DTs) [12, 13] to generate predictions. Fig-
ure 2 presents a schematic idea of the algorithm. Each tree is trained
on a random sample of the training data and a random subset of
the attributes, creating different data views. The final prediction is
made by polling the predictions of all the trees, making the model
more robust and less susceptible to overfitting. RF is widely used in
classification and regression applications such as image recognition,
sentiment analysis, and fraud detection [14].

...

Majority Voting/ Averaging

Dataset

Decision 
tree 1

Decision 
tree 2

Decision 
tree N

A

Prediction

result 1 result 2 result N...

Figure 2: Random Forest ensemble. The forest comprises
several random decision trees. Each tree is slightly different,
handling a subset of features and examples. The prediction
returned by the ensemble is the agreement of the committee.

Semantic image segmentation involves identifying and label-
ing each pixel in an image based on its semantic content, such
as identifying each object or region present in the image. This is
important in many areas, such as computer vision, robotics, and
medical image processing. RF can be trained to classify each image
pixel into different classes, such as object, background, or edge,
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using texture, color, and shape information. The result is precise
image segmentation that can be used in different applications.

2.3 Related works
A recent overview of the field of Semantic Segmentation is provided
by Liu et al. [15], emphasizing its significance in image processing
and computer vision. In the study, the authors highlight the impact
of Deep Neural Networks (DNNs) on the progress of segmentation
methods and categorize methods into traditional ML and recent
DL-based approaches.

Most of the studies in the literature have been using DL algo-
rithms to solve semantic segmentation of wounds [16, 17]. In Wang
et al. [18], the authors performed semantic segmentation of ulcers’
images. Experiments were carried out with state-of-the-art mod-
els that allow pixelwise classification, such as U-Net, FCN-VGG16,
Mask-RCNN, and MobileNetV2. Results reported that U-Net ob-
tained an accurate FScore value (0.915) and the highest recall among
all models (0.912).

Fully Connected Networks (FCN) were also studied in Kaymak
et al. [19] for segmentation of skin lesions, an experimental study
was carried out for segmentation for cancer detection that was
compared with other networks such as U-Net and SegNet, same
study object as in Mishra and Daescu [20], which, in addition to
CNNs, tests the performance of the segmentation using Otsu’s
threshold, being a much simpler technique than neural networks.

In another study [21], the authors performed the task of segment-
ing diabetic foot ulcers (DFU) in small datasets. They evaluated
different DL models, such as the U-Net, V-Net, and SegNet. They
were evaluated by accuracy, IoU, and FScore metrics. The results
were positive for U-Net, considering that the model outperformed
all the other models on the three metrics (0.949, 0.948, and 0.972,
respectively).

Also, aiming to segment DFU images, Wang et al. [22] compared
the DL ConvNet model with the classic ML algorithm Support
Vector Machine (SVM), using RGB values as features, evaluating
pixel-wise accuracy and IoU. Results were positive for ConvNet in
both metrics. The model obtained a value of 0.95 and 0.473 for pixel
accuracy and IoU, respectively, against 0.776 and 0.264 for SVM.

Innani et al. [23] substitute U-Net encoding blocks with other net-
works (ResNet, InceptionResNetV2 and EfficientNets) in an encoder-
decoder strategy for lesion segmentation also for cancer. However,
as the objective of the work is to perform a multiclass classification
task, there is a second step after the segmentation. The proposed
approaches are evaluated quantitatively in terms of the accuracy,
mean IoU, and Dice Similarity Coefficient measures. The proposed
cascaded end-to-end DL-based approach was the best overall, with
the classification accuracy of the lesion significantly improved be-
cause of prior segmentation.

Kang and Nguyen [24] developed a hybrid framework combining
RF and DL that learns flexible filters using an iterative optimization
algorithm, and segments input images using the learned representa-
tions. Experiments were performed in a hand segmentation dataset
for hand-object interaction and using two other semantic segmenta-
tion datasets. The results show that the proposed method achieves
real-time semantic segmentation using limited computational and
memory resources.

3 EXPERIMENTAL METHODOLOGY
In this section, we detail the experimental methodology adopted in
this article.

An overview of the flow of experiments, including sub-steps, is
shown in Figure 3. The following sub-sections give additional details
regarding them: the image dataset, data preparation, classification
algorithms used, and models’ training and evaluations.

3.1 Image Dataset
The dataset for this study consists of 71 images of mice with wounds
on their backs. This is a real dataset developed by the Pain, Neu-
ropathy, and Inflammation Laboratory at the State University of
Londrina (UEL) with the approval of the UEL Ethics Committee on
Animal Research andWelfare (process number 15654.2019.33). Data
acquisition process had a protocol, but different cameras obtained
images. Thus, 36 images have a resolution of 1024 × 768 pixels,
while the remaining 35 images have 4032 × 3024 pixels.

It is important to mention that assessing the wound progression
is outside the scope of this work, as this step requires more infor-
mation than just detecting the wound region. Hence, this study fo-
cuses on pixelwise classification (semantic segmentation) between
wounds and non-wounds. Figure 4 shows an example of an image
and its corresponding labels and predictions for an animal. The
classes (pixel labels) were defined manually using the Labelme
tool1.

3.2 Data Preprocessing and Augmentation
Since images may have different resolutions and neural network in-
put layers require a specific image size, all the images were rescaled
to a resolution of 256 × 256 pixels. The rescale operation was ap-
plied to original and mask (label) images. A normalization step
followed it, modifying pixel labels from [0, 255] to interval [0, 1].

Due to the low number of images in the dataset (71), a Data
Augmentation (DA) process was also required. DA is a technique
widely used in Computer Vision to increase the amount and variety
of data [25]. The technique involves applying transformations to the
original data and generating new instances. The main advantages
of using DA are:

• (i) models’ precision improvement since it generates more
significant variability in the data;

• (ii) cost reduction in data collecting and labeling, given
that collecting medical images is challenging and complex
work, as well as labeling them, this task is reduced as trans-
formations are applied to the original images and masks
simultaneously; and

• (iii) overfitting prevention, since the model tends to learn
specific patterns present in the available training data when
there is low variability in the data, losing its generalization
power to new data.

A total of five transformations were considered in DA: (1) hori-
zontal flip, (2) vertical flip, (3) rotation with a maximum angle of 35
degrees, (4) salt and pepper noise, and (5) image translation. With
the original images, the dataset with DA has 426 images available
for model induction. It is important to highlight that augmented

1https://github.com/wkentaro/labelme
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Figure 3: Experimental methodology for semantic segmentation of mice wounds.

(a) Original image. (b) Classes generated with Labelme. (c) Pixel mask.

Figure 4: Example of a dataset image instance and its correspondent labels.

images are used only in the training fold to induce the predictive
models. Only the original images in the testing fold were assessed
when evaluating these models.

3.3 Algorithms
We explored two different strategies for wound recognition:

i) U-Net: a pure DL architecture widely adopted for Semantic
Segmentation problems; and

ii) RF + VGG16: a hybrid and cheap alternative that extracts
VGG16 latent features to train a Random Forest model.

Initial experiments were done using different Fully Convolutional
Network (FCN) [2] architectures, but none of them recognized
wound regions in the testing images. We only obtained good results
when testing U-Net as the DL pure model. In fact, U-Net is one of
the most widely used architectures for Semantic Segmentation of
medical images [8].

U-Net was trained with Adam optimizer [26] and a learning rate
of 𝛼 = 0.0001. The loss function optimized was the binary cross en-
tropy since the network was used to perform binary classification.
The U-Net architecture uses ReLu activation functions between

convolutional layers and the sigmoid activation function as a clas-
sifier in its last layer. U-Net was trained for 100 epochs using batch
size 2. These values were defined empirically.

In the RF algorithm, the default value for the number of trees is
between [100, 500] depending on the coding language and corre-
spondent libraries/packages. However, all of them follow the same
idea: the higher the number of trees, the better the generalization
power of the induced model. In our experiments, the RF was im-
plemented with the scikit-learn Python library, which uses 𝑡 = 100
trees in the ensemble and ‘Gini’ index as the attribute evaluation
criterion as default values.

Some initial experiments were performed using RBG pixel values
for the RF algorithm, but the predictions did not identify any pixel
as a wound. Thus, an alternative explored is using 64 feature maps
extracted from the first two convolutional layers of the VGG162 neu-
ral network [6] to feed the algorithm. This DL model is pre-trained
in the ImageNet dataset. VGG16 is well known for accurately per-
forming computer vision tasks, including image recognition [27].
By extracting these feature maps, it is possible to obtain general
information about the images that can be used to train machine
learning models, such as the RF, with a lower computational cost.
2Visual Geometry Group, 16 layers.
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3.4 Experimental Setup
The resampling strategy adopted in experiments was a repeated
holdout, with five repetitions using different seeds. The dataset was
split into training, testing, and validation sets, with proportions of
60%, 30%, and 10%, respectively. It is worth mentioning that the
validation data was extracted as a part of the training set and not
used in the testing set.

The results obtained were evaluated for precision and efficiency
in the segmentation of wound images by F-Score, an evaluation
metric that combines precision and recall to provide an overall
measure of the model’s accuracy, and IoU [28]. All the code was
written in Python, with U-Net coded using PyTorch3. The U-net
implementation used no pre-trained weights. The RF+VGG16 strat-
egy used scikit-learn4 and Keras5 libraries. Experiments were
executed on a desktop with a Ryzen 5 5600g processor, using a
normal CPU environment, with 16GB of RAM, and motherboard
b550m. All the algorithms used their default hyperparameter values,
and no hyperparameter tuning process was conducted. The code
repository of this study is publicly available6.

4 RESULTS
Figure 5 illustrates each algorithm’s FScore and Intersection over
Union (IoU) values and suggests that both algorithms present simi-
lar result distributions. The U-Net median values for FScore (0.75)
and IoU (0.60) were slightly higher than RF ones (0.70 and 0.53).
The figure also shows that most images have FScore values above
0.6. The overall results indicate that both algorithms could identify
wounds regions and estimate the shape and wound filling even
with a small dataset.

However, due to the nature of the distributions represented by
the violins, some images presented difficulty for the algorithms.
U-Net could not perform generalization for some images with tiny
wounds. These images have a highly unbalanced pixel distribution,
as few pixels compose wound regions. It may affect the FScore
values but not the IoU. IoU only measures hits and misses on the
object but not on the background, which is why it is usually used
as an image segmentation evaluation metric. RF, on the other hand,
has more extended distributions for both metrics. Violins indicate
a considerable number of images with lower values of IoU and
FScore, more than U-Net. A superficial analysis could identify that
this occurred in some images when it fails to fill in the wound
region or even incorrectly classifies other parts of the animal as a
wound, such as regions of the paws or tail.

All the algorithms were executed in the same training and testing
partitions and repeated with different seeds (varying from 1 to 5).
Thus, the non-parametric Wilcoxon test with 𝛼 = 0.05 (95% of
significance) was applied to assess the statistical significance of
these results. The null hypothesis states that there is no difference
in performance between the algorithms. The test was applied for
both metrics (FScore and IoU) and obtained a p-value = 0.00101,
which suggests a difference in terms of performance in favor of the
U-Net.
3https://segmentation-modelspytorch.readthedocs.io/en/latest/docs/api.html#unet
4https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
RandomForestClassifier.html
5https://keras.io/api/applications/vgg/
6https://github.com/BrunoMarcato/MiceWoundSegmentation

Although U-Net is statistically better than RF regarding predic-
tions, the computational cost for training both algorithms differs.
RF took 20 minutes in total to execute the five repetitions, while U-
Net needed 9 hours. That is, the 64 feature maps extracted from the
VGG16 and fed into the RF can be a viable alternative to speed the
process of wound recognition rather than using a deep architecture,
such as U-Net.

4.1 Prediction analysis
Figure 6 presents a heatmap with the obtained predictions of each
algorithm in each image. The X-axis lists all the images, while the
y-axis lists the evaluated algorithms (U-Net and RF). Heatmaps
were generated for both performance measures (FScore and IoU).
The higher the values, the more blue the cell is (and better). The
lower the values, the more red the cell is (and worse). It is desired
heatmaps with as much blue as possible.

Both measures show the same behavior: FScore values are higher
in the same images where the correspondent IoU values are high.
Good predictive values were obtained with images with ids = {1,
2, 3, 5, 6, 7, 66, 68, 69, 70, 71}. All of them are images with bigger
wounds. An example can be seen in Figures 7a and 7b. Those images
illustrated the U-Net predictions on the image with id = 5. Obtaining
predictions are close to the desired area identified in the class mask
(Figure 7b).

On the other hand, predictions were not accurate for images with
ids = {28, 29, 38, 50, 52}, to name a few. Wounds in these images are
tiny, with fewer pixels, and thus more challenging to identify. An
example is depicted in Figures 7c and 7d, with the RF predictions on
the image with id = 50 and its desired mask. Here it is possible to see
that besides being unable to recognize the small regions of wounds,
the RF algorithm wrongly identifies other parts of the animal as a
wound.

The fact that RF uses initial layers of VGG ends up using high-
level features such as color, thus giving importance to red regions,
which is expected for wounds. However, this color is also present in
other regions, as shown in the image (7c) with prediction generated
by RF, which can be one of the causes of the loss of performance
concerning U-Net.

5 CONCLUSIONS
This study investigated U-Net and RF with VGG latent features
to solve a semantic segmentation problem of mice wounds. Ex-
periments were carried out with an image dataset generated by
the Pain, Neuropathy, and Inflammation Laboratory at the State
University of Londrina, composed of 71 images showing wounds in
mice. U-Net and RF+VGG were executed five times with different
seeds splitting data into training and testing folds. Predictions were
evaluated by F-Score and IoU metrics.

Results were promising: U-Net obtained F-Score and IoU aver-
age values of 0.75 and 0.60, respectively. Most images generated
accurate predictions of the wound regions, with some exceptions
in images with tiny wounds. The RF+VGG alternative was faster
regarding the computational cost but statistically lower in perfor-
mance, with lower average F-Score and IoU (0.70 and 0.53). How-
ever, it can be improved with some post-processing techniques to
fill regions not wholly identified.
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Figure 6: Predictions obtained by each algorithm in each image.

(a) U-Net - Image 5 (b) Mask - Image 5 (c) RF - Image 50 (d) Mask - Image 50

Figure 7: Examples of good and bad segmentation wound areas obtained in experiments.

An alternative might be replacing VGG16 with a more robust DL
architecture, such as ResNet, or setting up the U-Net and RF with
DL architectures with pre-trained weights by Transfer Learning.
Other alternatives for future works include evaluating more and
different DL architectures, ML algorithms and automating the entire
pipeline.
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