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ABSTRACT
Predicting bug-fixing time plays an important role in allowing a
software manager and team to make decisions about allocation
of resources, prioritization and scheduling. Estimating the time
to fix a bug is not a simple task. In the literature, machine learn-
ing (ML) models have been proposed to help software managers
decide whether a bug might be fixed now or later. One feature
highlighted in ML models for predicting bug-fixing time is reporter
reputation. However, these features are based on the participation
of the reporter or developer in the project, but do not take into
account the time taken to fix the bugs. In this study, we propose
new two features called "reporter rating" and "developer rating."
Unlike reputations, ratings are based on the time taken to fix a
bug. In this study, we carried out an experiment in two datasets
containing bug reports. We ran the reputation and rating features in
ten ML models and compared the results. Additionally, we verified
the features together and combined them with textual features. As
a result, we found that ratings can improve the performance of the
models. Ratings had the best results in probabilistic models, while
reputation was better in models that use the decision tree approach.
When used together, reputations and ratings do not substantially
increase the performance of the models when compared to individ-
ual results. However, ratings improve performance when combined
with textual features more than reputations.
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1 INTRODUCTION
Predicting bug-fixing time plays an important role in Software
Maintenance and Software Quality. Accurate predictions make it
possible to allocate resources correctly, plan the project schedule
and estimate costs. Usually, the estimation of the time it takes to
fix a bug is given by developers and is supported by their intuition
and experience. In the literature, studies have proposed the appli-
cation of Machine Learning (ML) to predict bug-fixing time. One
feature highlighted by studies in the literature is the bug-opener’s
reputation (reporter’s reputation) [1], also called submitter rep-
utation [2]. Studies have shown that the person who opens the
bug has a positive impact on predicting bug-fixing time in ML
models [3–6]. Rodrigues and Parreiras [7] have demonstrated that
collaborative filtering can be utilized to predict bug-fixing time. In
this approach, the users (reporter and developer) are the focal point
of predictions. The algorithms employing collaborative filtering
outperformed those that do not incorporate collaborative filtering.

In addition to reporter reputation, textual approaches have been
used to predict bug-fixing time. This approach enables models to

predict the time to fix a bug through the summary description and
comments of bug reports [8, 9]. Predicting bug-fixing time can be
seen as a classification problem [10], where the system suggests
whether the bug can be fixed quickly or slowly, helping the software
teams prioritize the tasks, where they may select which bug can be
fixed first. Classifying bugs as fast or slow aids software managers
in deciding if the bug can be fixed now or later.

In this paper, we proposed two new features called "reporter
rating" and "developer rating." The rating is a score from 1 to 5
based on a bug report. The ratings are computed by quartiles of bug
resolution time. For instance, if a reporter submitted a bug report
that was resolved in less than one day, we score it as a 5, as in a five-
star service. If the bug report was resolved in more than the median
bug-resolution time, 75% of the quartile, we scored it as a 1. We
use ML techniques to classify whether the bug will be fixed quickly
or slowly using reporter and developer ratings. We compared the
performance of our proposed features with the concept of reporter
and developer reputations. Reporter and developer reputations are
features based on the number of previously fixed bug reports. Their
reputation helps us know whether the bug will be fixed or not. The
more bug reports are submitted and fixed, the higher the reputation
score will be [1]. In contrast to this approach, we proposed features
based on the time taken to fix previous bugs. Accordingly, we intend
to answer the following research questions:

(1) RQ1: Is reporter rating superior to the reporter reputation
feature in supervised machine learning?

(2) RQ2: Is developer rating superior to the developer reputa-
tion feature in supervised machine learning?

(3) RQ3: Can the combination of reporter and developer ratings
and reputations improve the performance of the models?

(4) RQ4: Can reporter and developer ratings, when combined
with text features, increase the performance of predictions
when compared to reporter and developer reputations?

To address these inquiries, we expand upon the work of Rodrigues
and Parreiras [7] by conducting an experiment using bug reports
from the NetBeans project and Eclipse Platform as datasets. We
applied the reputation and rating features in ten supervised ML
techniques. In our experiment, we found that reporter reputation is
a feature that performed well in Decision tree and Random Forest
algorithms while the reporter and developer rating have the best
results in Gradient Boosting and Logistic Regression. The combi-
nation of the features can improve the performance of the models.
Ratings may improve the performance of the models when com-
bined with text features. This paper contributes with the proposed
of two new features that can be used in ML models. In addition, this
work contributes to improving the understanding of the impact of
reporter and developer on predicting bug-fixing time models.
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The rest of the paper is organized as follows: Section 2 presents
the bakcground foundations. Section 3 presents related studies.
Section 4 describes the proposed features. Section 5 shows the
experimental methods in this study. Section 6 shows the results
of the experiment. Section 7 presents the discussion of the study.
Section 8 shows the threats to the validity of the research. Finally,
Section 9 provides conclusions and future studies.

2 BACKGROUND
2.1 Bug Life Cycle
The life cycle of a bug comprises three phases: bug understanding,
bug triage and bug fixing [11]. In bug understanding, the manager
filters the bug to be fixed. In bug triage, the manager assigns the
bug to a developer. If the bug was misunderstood, the likelihood
of the bug being reassigned is high. In the bug-fixing phase, the
developer must find and fix the bug in the source code [11].

2.2 Machine Learning
Machine learning is a multidisciplinary area comprising disciplines
such as biology, statistics, mathematics and physics. The main idea
ofmachine learning is tomake computers learn [12]. In this workwe
use the supervised learning. This method uses algorithms trained
by sets of examples that have correct responses or targets and try
to respond correctly to all possible inputs. The algorithms in this
category can treat the problem as Regression that uses continuous
data, or Classification that uses discrete data [12].

3 RELATEDWORK
Predicting bug-fixing time using reputation as a feature is recurrent
in the literature. Guo et al. [1] carried out an experiment to estimate
the likelihood that a given bug will be fixed. They noticed that not
all bugs that are reported are fixed. They proposed a statistical
model that was applied to Windows Vista and Windows 7 projects
to identify the bugs that will be fixed. Their model uses logistic
regression, which obtained 68% precision and a recall of 64%. They
also conducted a survey with Microsoft employers in order to get
their perception regarding the factors that influence the bugs that
can be fixed. In their findings, they highlight the influence of the
person who opens the bug, also called ‘’bug opener reputation,”
corroborating with the work of Hooimeijer and Weimer [2], and
developer reputation, where many reassignments decrease the like-
lihood that a bug will get fixed. In their work, the authors found
that the person who opens the bug has an influence on whether the
bug will be fixed or not and the time taken to fix it. In our study, we
evaluated reporter reputation and proposed features for predicting
the time needed to fix a bug based on the reporter and developer,
but we did not evaluate if the bug will be fixed or not.

Yücel and Tosun [13] proposed a novel reporter reputation scor-
ing method. Differing from Guo [1] and Zhang et al. [3], the authors
utilize temporal reputation changes andDoc2Vec to train the textual
information. They compare the new reputation against the repu-
tations mentioned in the literature by applying two open-source
projects, Chromium and WebRTC, and employing two machine
learning techniques: Stochastic Gradient Descent (SGD) and Ex-
treme Gradient Boost (XGB). In our study, we also propose new
features based on the reporter and developer and compare them

to the reporter reputation in the literature. Unlike Yücel and To-
sun [13], we classify the reporter and developer based on the time
taken to resolve the bug report. Additionally, we experiment with
the new features together with textual information, using Term
Frequency-Inverse Document Frequency (TF-IDF). Furthermore,
we evaluate the performance of ten machine learning techniques
to analyze the behavior of our proposed features.

Peralta et al. [6] investigate the features present in bug reports
to predict bug-fixing time. They employed Bayesian Network to
model the relationship between the variables of the bug reports,
using data from Mozilla as their dataset. Their findings highlight
attachments and the reporter’s reputation as variables relevant
for predicting whether the bug will be fixed, while severity and
comments are crucial for predicting quick bug-fixing. Similar to
Peralta et al. [6], our work analyzes bug-fixing time and utilizes
reporter reputation as a significant feature. However, we propose
two new features based on the developer and reporter.

4 RATING FEATURES
In this study, we proposed a feature named "rating score." The re-
porter and developer’s reputation features are based on the number
of bugs informed by the reporter or assigned to the developer that
were fixed. We understand that information about the time taken
to fix previous bugs related to reporters and developers can be used
in models to increase the performance of predictions of bug-fixing
time. In other words, we proposed features based on the time taken
to fix bugs and not on the number of bugs fixed to predict bug-
fixing time. Table 1 shows classification details. We consider bugs
fixed with a rating of 3 or less to be fast. With this information, the
software manager can choose whether or not to prioritize a bug.

In our proposed feature, the rating score can be related to the
reporter or a developer. For example, if the median bug-fix time is
15 days and a developer fixed a bug in 10 days, the rating is 4. Both
the reporter and the developer were classified as 4 for their work.
We expect that information in the bug report can make models
more accurate after adding information about classification times
used by the reporter and developer for previous bugs. The rating
score can be combined with other features like textual features or
priority and help the models predict time more precisely.

Before computing the rating of the reporter and developer, it is
necessary to filter the bugs that were fixed and remove the outliers.
The outliers can raise or lower the median bug-fixing time of the
project. For example, depending on the dataset, the median number
of days taken to fix a bug can be 27. After treating the outliers it
can be 17. Details about outliers is shown in section 5.1.

5 EXPERIMENT
To answer the research questions, we carried out an experiment
using the Eclipse Platform and NetBeans datasets. These datasets
are available in MSR 2011 [14] and the work of Rodrigues and
Parreiras [7]. Eclipse and NetBeans are two popular open-source
projects for integrated development environments (IDE). These
datasets contain bug reports stored in MySQL format. Both the
Eclipse and Netbeans projects use Bugzilla as their bug-issue track-
ing system. Thus, the structures of these datasets are similar. Al-
though the data utilized in this experiment originates from a dataset
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Table 1: Rating Score

Rating Time in days
5 less than or equal to 1 day to fix
4 greater than 1 and less than or equal to 25% of

percentile
3 greater than 25% and less than or equal to 50%

of percentile
2 greater than 50% and less than or equal to 75%

of percentile
1 greater than 75%

dating back to 2011, our objective is to assess the features: ratings
and reputations. By doing so, we understand that the features get
the context of the team independent of the technology used in the
project. In other words, the features are adapted to the reality of
each project in each epoch. After getting the datasets, we first ex-
plored the database, selecting attributes from the bug reports of our
experiments and exporting them in CSV format. Next, attributes
from Bugzilla were selected which were initially noted when the
person opened a bug. Our goal is to predict bug-fixing time at the
beginning of the triage.

We used Google Colab to carry out the experiment. Google Colab
is an environment prepared to execute data analyses directly in a
browser 1. We selected ML algorithms present in bug-fixing time
prediction literature: Random Forest, Logistic Regression, KNN,
Naive Bayes Gaussian, Naive Bayes Multinomial, SVM, MultiLayer
Perceptron, SGD Classifier and Gradient Boosting [3, 7, 10, 15].

Data exploration was performed with Python (version 3.6.9)
and the libraries NumPy (version 1.18.5), Pandas (version 1.0.5)
and Matplotlib (version 3.2.2). These Python libraries are used to
understand the data, remove the outliers and discretize the data.
The code used in this experiment is available at https://github.com/
brunorodriguesti/BFT_Rating_Features.

The following steps were followed to perform the experiment.
First, we obtained the datasets and analyzed them according to their
descriptions in sections 5.4. Second, we removed outliers described
in section 5.1. We consider outliers to be bugs that are fixed in a
time of 0 days or that take over 75% of quartile. Third, we classify
bugs as fast or slow using the median time taken to resolve them
according to the formula 2. We balanced the dataset so it had the
same number of fast and slow bugs. Next, we computed the reporter
and developer rating scores, as well as the reporter and developer
reputations. The ratings were computed according to Table 1 and
the reputation according to the formula 1 [1, 2]. We also calculated
average ratings in order to verify if the average could be a relevant
feature. The ratings and reputations were calculated according to
each bug at that specific moment in time. For example, the first bug
that the reporter submitted received a rating of 3, because we had
no prior information about the bug. The same goes for a reputation
which received a first score of 0. In this way, the next time that
we have a bug report submitted by a given reporter or assigned
to a given developer, we already know what the real rating and
reputation were before computing the next rating and reputation. In

1https://colab.research.google.com/

other words, we created a column in our datasets with information
about the ratings and reputations known at that moment in time
and a column with the real rating and reputation used to compute
the next rating and reputation.

𝑟𝑒𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 =
|𝑂𝑃𝐸𝑁𝐸𝐷

⋂
𝐹𝐼𝑋𝐸𝐷 |

|𝑂𝑃𝐸𝑁𝐸𝐷 + 1| (1)

5.1 Outliers and Classification
In our experiment, we only considered bugs that had already been
resolved, thus, we used bugs with a status resolution of fixed. The
bug-fix time was calculated in days. For example, if bugs were
resolved on the same day, they have zero days of resolution.

In treating the outliers, we removed the 75% quartile and the
bugs whose resolution were equal to zero days. The quality of the
data and the accuracy of the models was improved by removing
the outliers [16]. On analyzing our dataset, we noticed that the
bug reports with zero day resolutions were not always bugs. These
reports are tests of environment or bugs resolved prior to reporting,
in other words, they were reported only for registration purposes.
We removed bugs over 75% quartile from the dataset as they were
outliers that do not represent the reality of all types of bugs.

In order to classify the bugs as fast or slow, the approach pro-
posed by Giger et al. [10] was used. The data were divided into fast
and slow according to the formula 2.

𝐵𝑢𝑔𝐶𝑙𝑎𝑠𝑠 =

{
𝐹𝑎𝑠𝑡 𝑑𝑎𝑦𝑠 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 <=𝑚𝑒𝑑𝑖𝑎𝑛

𝑆𝑙𝑜𝑤 𝑑𝑎𝑦𝑠 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 > 𝑚𝑒𝑑𝑖𝑎𝑛
(2)

5.2 Experiment Execution
After removing the outliers, we used the following features in the
supervised ML approach: reporter id, the developer id of the person
who fixed the bug, the priority, the severity, the product, the component,
the operational system, the month of creation, the year of creation. The
priority and severity attributes were transformed into categorical
features. These set of features we called initial features. We also use,
the title of bug and the first comment as textual features. We then
combined them with reporter and developer reputation and reporter
and developer ratings. For textual features, we took the content of
the title of the bug and description of the first comment and put
them in one field. In this field, we extracted the bag of words and
treated the bug report texts with the following steps [17]:

(1) convert all words to lower case
(2) remove links and html tags
(3) remove numbers and special characters
(4) remove stop words
(5) stem words
We built a document-terms matrix with the frequency of terms,

removing one percent of the most infrequent terms. Next, we used
term frequency (TF) and term frequency-inverse document fre-
quency (TF-IDF) to create features for classification algorithms.

In our experiment, we tested the behavior of algorithms with-
out the textual features and then with textual elements (title and
comment) to classify the bug report as fast or slow. Thus, we ran
the initial features and then the initial features with reputations,
followed by the initial features with ratings, and finally, the initial
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features with both. We then followed the same steps with textual
features.

The objective of this experiment is to classify whether a bug
will be fixed quickly or slowly according to the initial attributes
informed, thus, allowing a manager to decide if a bug should be
fixed now or later, as quickly as possible. The exception attribute
we used to test the models is the developer. We decide to select the
developers that fixed the bug instead of those first assigned to the
task because they directly affected the time taken. The problems of
assigning the bug to the correct developer and reopened bugs are
not treated in the scope of the experiment.

To evaluate the performance of the models, we used precision,
recall and f-measure described in section 5.3. The tests were per-
formed with 10-fold cross-validation.

5.3 Evaluation Metrics
In this paper we use Precision, Recall and F-measure metrics in
order to evaluation the models. Precision, also called Confidence, is
the ratio of predicted positive cases that are correctly true-positives,
while the Recall or Sensitivity is the ratio of true-positive cases that
are correctly predicted positive. The combination of precision and
recall can be formulated by the F-measure, also called F-Score. The
F-measure is the harmonic mean between the precision and the
recall [18].

5.4 Dataset
In order to evaluate our features, an experiment was performed
using bug tracking data from the following systems: Eclipse and
Netbeans available from MSR 2011 [14] and used in the work of
Rodrigues and Parreiras [7]. Only bug reports with the resolution
status of ”FIXED” were used in this experiment. We classified an
equal number of bugs as ”fast” and ”slow” in the datasets. The
Eclipse dataset has 24706 bugs and the Netbeans has 3068 bugs.

6 RESULTS
This section presents the results of our experiment and our answers
to our research questions (RQ).

6.1 RQ1: Is reporter rating superior to the
reporter reputation feature in supervised
machine learning?

To answer this research question, we selected initial features like
reporter, the developer who fixed the bug, priority, severity, product,
component, operational system, the month of creation, and the
year of creation. These features are available in the bug reports
and are used to identify the type of bug report, we called these
features as initial features. We ran the initial features in supervised
ML algorithms and then the reputations with the initial features.
Finally, we ran the rating features and the initial features.

Table 2 shows the results of our experiment in Eclipse Platform.
Random Forest and Gradient Boosting show the best results. In
Random Forest, the initial features and the reporter reputation had
similar values. Gradient Boosting and SVM had results equal to all
combinations of features. In these models, reputation and rating do
not increase or decrease the performance. The reputation and rating

features had results similar to the initial features, the exceptions
were SGD Classifier, MultiLayer Perceptron, Logistic Regression
and Naive Bayes Gaussian. The results of the features of reporter
reputation and rating are close. However, in Logistic Regression,
the reporter rating achieved 12% of F-measure more than reporter
reputation.

Table 2: Average F-measure of reporter reputation and rating
in Eclipse Platform

Initial fea-
tures

Reporter
reputation

Reporter
ratings

*Random Forest 67% 67% 65%
Gradient Boosting 65% 65% 65%
*Decision Tree 62% 62% 60%
**KNN 61% 60% 61%
**SGD Classifier 51% 51% 56%
MultiLayer Perceptron 44% 52% 46%
SVM 47% 47% 47%
**Logistic Regression 47% 47% 59%
**Naive Bayes Multi-
nomial

42% 42% 43%

**Naive Bayes Gauss-
ian

35% 35% 40%

Different from the Eclipse project, the Naive Bayes Multinomial
algorithm presented the best results in the NetBeans project.Table
3 shows the average F-measure of reporter reputation and rating
in NetBeans. In our experiment, the Naive Bayes Multinomial, all
combinations of features had the same results. Reporter reputation
was better in Random Forest, Gradient Boosting, Decision Tree,
KNN and SGD Classifier. As well as in the Eclipse dataset, the
features when applied in NetBeans dataset show few variations,
the expressive variation is present in Multilayer Perceptron which
achieve the difference between reporter reputation and reporter
ration of a F-Measure of 7%.

Table 3: Average F-measure reporter reputation and rating
in NetBeans

Initial fea-
tures

Reporter
reputation

Reporter
ratings

Naive Bayes Multino-
mial

65% 65% 65%

*Random Forest 60% 63% 60%
**Naive bayes Gauss-
ian

62% 61% 62%

**SVM 60% 61% 62%
*Gradient Boosting 58% 60% 59%
*Decision Tree 59% 60% 56%
*KNN 56% 57% 55%
**Logistic Regression 57% 56% 57%
*SGD Classifier 49% 45% 42%
**Multilayer Percep-
tron

34% 36% 43%
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Reporter rating was better in probability techniques like Naive
Bayes and Logistic Regression, while reporter reputation was better
in tree-based machine learning like Decision Tree and Random For-
est. Depending on the dataset, the reporter can be more influential
in predicting bug-fixing time, i.e. the Eclipse project. Reporter rating
performed better than reporter reputation with Logistic Regres-
sion and Naive Bayes Gaussian in both datasets, whereas, reporter
reputation performed better in Random Forest and Decision Tree.
In both datasets, reporter rating decreased the performance in the
Decision Tree algorithm when compared to initial features.

The results of the ML algorithms show that the results are close
between the initial features, reporter reputation and reporter rating.
However the variation is superior using the reporter ratings in
Logistic Regression (Eclipse) and Multilayer Perceptron (NetBeans).

6.2 RQ2: Is developer rating superior to the
developer reputation feature in supervised
machine learning?

To evaluate the performance of developer reputation and developer
rating, we ran the experiment as described in the answer to RQ1
and Section 5.

Table 4 shows the average F-measure for developer reputation
and rating in Eclipse Platform. Like the result for reporters, devel-
opers had the best results in Random Forest, Gradient Boosting
and Decision Tree. The behavior of the ratings is similar. In both
cases they decreased the results in Random Forest and Decision
Tree. On the other hand, they were better in Gradient Boosting
and Multilayer Perceptron. The results of KNN and SVM did not
have a difference between reputation and rating features. Logistic
Regression, Naive Bayes Gaussian and Naive Bayes Multinominal
also had a greater F-measure for developer rating in relation to
developer reputation and initial features. An expressive variation
between the developer rating and developer reputation is present
in the Logistic Regression with 19% of difference and Naive Bayes
Gaussian with 11% of difference.

Table 4: F-measure of developer reputation and rating in
Eclipse Platform

Initial fea-
tures

Developer
reputation

Developer
ratings

*Random Forest 67% 68% 66%
**Gradient Boost-
ing

65% 65% 67%

*Decision Tree 62% 63% 61%
KNN 61% 60% 60%
**SGD Classifier 51% 54% 52%
*MulitLayer Per-
ceptron

44% 49% 54%

**Logistic Regres-
sion

47% 47% 66%

SVM 47% 47 47%
*Naive Bayes Multi-
nomial

42% 42% 43%

**Naive Bayes
Gaussian

35% 36% 47%

Table 5 presents the results of developer reputation and rating in
the NetBeans project. Naive Bayes Multinomial had the best results,
however, the values of predictions are the same for all features
tested. MultiLayer Perceptron, SGD Classifier, Gradient Boosting
andNaive Bayes Gaussian had better results using developer ratings.
MultiLayer Perceptron stood out from the others, with an average
developer rating F-measure 10% greater than the average developer
reputation.

Table 5: Average F-measure of developer reputation and rat-
ing in NetBeans

Initial fea-
tures

Developer
reputation

Developer
rating

Naive Bayes Multino-
mial

65% 65% 65%

**Naive bayes Gauss-
ian

62% 61% 62%

*SVM 60% 62% 60%
*Random Forest 60% 61% 60%
*Decision Tree 59% 60% 57%
**Gradient Boosting 58% 58% 62%
Logistic Regression 57% 56% 57%
*KNN 56% 57 56
**SGD Classifier 49% 44% 51%
**Multilayer Percep-
tron

34% 43% 53%

In the Eclipse Platform andNetBeans projects, Gradient Boosting,
SGD Classifier, MultiLayer Perceptron, Logistic Regression and
Naive Bayes Gaussian performed better using developer rating than
developer reputation, while developer reputation performed better
in Random Forest and Decision Tree. We can see that developer
reputation was better in Eclipse Platform using Random Forest. In
Netbeans they had equals results in the Naive Bayes Multinominal.
The result obtained by developer rating in Naive Bayes Gaussian
and Gradient Boosting was the same as that obtained by developer
reputation in SVM. In other words, developer ratings might be
superior to reputations in five ML models, while the opposite is
true in two ML models in both datasets. Comparing the difference
between the results of developer reputation and developer rating the
developer rating achieves superior F-measure. The best results of
the developer reputations are close to initial features and developer
ratings.

6.3 RQ3: Can the combination of reporter and
developer ratings and reputations improve
the performance of the models?

To answer this question, we first ran the models putting reporter
and developer reputations together. Next, we ran the models com-
bining reporter and developer ratings. Finally, we used reputations
(reporter and developer reputation) and ratings together (reporter
and developer ratings). Both models use the initial features.

Table 6 presents the average F-measure in Eclipse Platform. We
can see that Random Forest and Gradient Boosting present the
best results. In Random Forest, the average F-measure achieved the
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same value obtained by developer reputation. Gradient Boosting
achieved the same values as Random Forest when using the combi-
nation of reputations and ratings. In this case we can see that the
combinations increase performance as the results show in Table
2 and 4. SGD Classifier also increased performance when it used
a combination of reputations and ratings. Naive Bayes Gaussian
increased performance with the combination of reporter and de-
veloper ratings and when reporter and developer reputations and
ratings were added together.

Logistic Regression and Naive Bayes Gaussian achieved the best
results using only ratings (reporter and developer ratings together),
while Random Forest and Decision Three had the best results using
only reputations (reporter and developer reputations).

Table 6: The Average F-measure of Features in Eclipse Plat-
form

Reputations Ratings Reputations
and Ratings

Random Forest 68% 65% 66%
Gradient Boosting 65% 67% 68%
Logistic Regres-
sion

48% 65% 65%

Decision Tree 63% 60% 60%
KNN 60% 60% 60%
SGD Classifier 55% 44% 58%
MultiLayer Per-
ceptron

52% 46% 54%

Naive Bayes
Gaussian

36% 52% 51%

SVM 47% 47% 47%
Naive Bayes
Multinomial

42% 42% 43%

Table 7 shows the average F-measure for the NetBeans project.
In the NetBeans project, the Naive Bayes Multinomial algorithm
had the best performance of all initial features. The combination
of reputations and ratings was superior to the results of the Naive
Bayes Gaussian, Logistic Regression and SGD Classifier. In these
models the performance improved when compared to previous
results presented in Table 3 and 5.

Gradient Boosting had the same performance using developer
ratings and reporter ratings. SVM had the same performance when
only the reporter ratings were tested. Differently, KNN and Multi-
Layer Perceptron had the best results only with developer ratings.
In regard to reputation, combining reputations (reporter and devel-
oper) improved the performance in Decision Tree.

6.4 RQ4: Can reporter and developer ratings,
when combined with text features, increase
the performance of predictions when
compared to reporter and developer
reputations?

To answer this question, we first ran the models using only TF-IDF.
We then ran the models using the ratings and, lastly, the reputations.

Table 7: Average F-measure of Features in NetBeans

Reputations Ratings Reputations
and Ratings

Naive Bayes
Multinomial

65% 65% 65%

Naive Bayes
Gaussian

61% 63% 63%

Gradient Boosting 59% 62% 62%
SVM 62% 61% 62%
Random Forest 62% 60% 61%
Logistic Regres-
sion

56% 58% 59%

Decision Tree 61% 57% 57%
KNN 56% 55% 55%
SGD Classifier 48% 46% 54%
MultiLayer Per-
ceptron

40% 41% 41%

Table 8 shows the F-measure of the contextual features in Eclipse
Platform.

In Eclipse Platform, the combination between TF-IDF and ratings
features increased the performance in Gradient Boosting, Random
Forest and Logistic Regression. In these models, the reputations
also increased the performance of TF-IDF, however, ratings were
superior to reputations in these models. KNN and Decision Tree
had the same performance with reputations and ratings. Reputation
was only superior to the others in the MultiLayer Perceptron model.
For all other models, TF-IDF had the best performance.

Table 8: F-measure of the contextual features in Eclipse Plat-
form

TF-IDF TF-IDF +
Reputation

TF-IDF +
Ratings

Gradient Boosting 60% 65% 68%
Random Forest 61% 64% 68%
Logistic Regres-
sion

59% 48% 65%

KNN 55% 60% 60%
Decision Tree 53% 59% 59%
Naive Bayes
Gaussian

57% 36% 52%

SVM 60% 47% 47%
Naive Bayes
Multinomial

60% 43% 43%

MultiLayer Per-
ceptron

58% 60% 41%

SGD Classifier 62% 57% 39%

The results of textual features in the NetBeans project can be
seen in Table 9, which shows the average F-measure when using
textual features. In our results, ratings increased the performance
in the NetBeans project using Random Forest, Gradient Boosting,
Logistic Regression and Decision Tree. Reputation was better in
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the SVM model. Naive Bayes Multinomial, Naive Bayes Gaussian
and KNN had the same performance for both reputation and rating
but increased the performance of TF-IDF. On the other hand, with
Multi-layer Perceptron and SGD Classifier, the best performance
was TF-IDF without other features.

Table 9: Performance in F-measure using Text Features in
the NetBeans Project

TF-IDF TF-IDF +
reputation

TF-IDF +
ratings

Naive Bayes
Multinomial

60% 65% 65%

Random Forest 61% 62% 65%
Gradient Boosting 59% 59% 65%
Naive Bayes
Gaussian

54% 62% 62%

LogisticRegression 59% 58% 60%
SVM 59% 62% 60%
Decision Tree 57% 55% 59%
KNN 54% 56% 56%
Multi-layer Per-
ceptron

58% 51% 44%

SGD Classifier 59% 54% 37%

7 DISCUSSION
In this study, we present features called "reporter rating" and "de-
veloper rating." They are based on the time taken to fix a bug. In
contrast to reputations, which are based on the frequency that the
reporter or developer submits or fixes a given number of bugs,
ratings are based on the time taken to fix them.

Our intuition was that a feature based on time would be more
relevant tomachine learningmodels than the number of bug submis-
sions. However, reputations showed an average F-measure greater
than ratings in Eclipse Platform. In Eclipse Platform, the Random
Forest algorithm shows the best F-measure values. Reporter and
developer reputation performed better than ratings in this case.
However, we can not claim that the difference between these fea-
tures are significant. In Eclipse Platform, Random Forest had a
F-measure of 67% for reporter reputation, while the reporter rat-
ings arrived at 65%. The same occurred in the Netbeans project,
where reporter reputation achieved 63% and reporter rating 60%.
For developers, reputations and ratings followed a similar pattern.
Developer reputation achieved an average F-measure of 68% and
developer rating 66%.

In our experiment, it is possible to see that, when combined,
reputations and ratings can improve the performance of the models.
For example, Gradient Boosting, SGD Classifier and Multilayer
Perceptron were slightly improved using the two features at the
same time in Eclipse Platform. We can observe the same behavior
in Netbeans with SGD Classifier. It is important to say that neither
reputation nor rating are independent variables. For this experiment
we used the initial feature as listed in sec 5. The combination of
these features, as well the choice in datasets, could have influenced
the results of our experiment [19]. According to Bhattacharya and
Neamtiu [19], even though we can not generalize prediction models,

they concluded that open source projects are not influenced by bug-
opener reputation; whereas, commercial projects may be influenced
as shown by Guo et al. [1] and confirmed by Zhang et al. [3]. We
deduce that commercial projects may be more influenced by the
person who opened a bug due to the organizational hierarchy. For
example, if a person with a high position in the company opens a
bug, it may be fixed more quickly merely because of the existing
hierarchy, while a bug opened by a person in a lower position
than the developer that received it might be fixed more slowly. In
contrast to companies, influence in open source projects is built
over time.

Naive Bayes Gaussian and Logistic Regression show the best
results with rating features in both datasets tested. The rating fea-
tures were superior to reputation in these models. Rating features
proved to be better when used together with textual features. Ran-
dom Forest and Decision Tree showed the best results when used
with reputations in both datasets. The exception to this observation
is when we used textual features in conjunction with reputations.
In this case, these algorithms showed better results with ratings.

In the NetBeans project, the Naive Bayes Multinomial model
had the best performance. The performance achieved in the Naive
Bayes Multinomial was the same for initial features as it was with
textual features combined with reputations and ratings. The worst
result for the Naive Bayes Multinomial in the NetBeans project was
when we ran only text. In the literature, non-textual features have
shown to be a good option for predicting bug-fixing time. Habayeb
et al. [4] argues that textual features are computationally expensive.

Random Forest and Gradient Boosting performed well in our
experiment. Both techniques are ensemble machine learning. The
Dehghan et al. study [20] has shown that ensemble learning may
improve the performance of bug-fixing time predictions. In our
study, we can see that ensemble learning was in fact shown to be
useful for predicting bug-fixing time.

Other studies have shown that incorporating post-submission
features [2, 4], which are updated over time [13], may improve
accuracy. We understand that ratings could be combined with fea-
tures such as the number of developers available at the time the
bug was opened, the total number of bugs opened until that point,
the number of attachments and comments [6], as well as the role
of the person who reported the bug within the project. As well as
other textual features, such as Word Embeddings, Topic Modeling,
or Word2Vec. In summary, by integrating project-specific features
with our proposed features, the predictive results can be further
improved.

8 THREATS TO VALIDITY
Internal validity: Despite the increasing use of deep-learning
approaches in predicting bug-fixing time, which has been promising,
our experiment focused only on supervised ML approaches. The
hyperparameters of algorithms were not tuned, instead the default
hyperparameters of libraries were employed.

External validity: Only two datasets were used. These datasets
are generally used in the prediction of bug-fixing time research. We
can not generalize our results. Eclipse and Netbeans are two popular
open-source projects which have their own peculiarities arising
from their community and processes. In literature, the person who
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open the bug has better performance in proprietary software. In
this work, we only analyzed open source projects.

Construct validity: in our experiment, we calculated the time
to fix a bug in days. This assumption may not have captured the
real time to fix a bug. Also, we remove the bug reports that have
taken less than one day to be fixed and the outliers are a great
75% quartile. We based the equation to calculate the bug-fixing
time and to the decision regarding removing the outliers based
on the current literature. The remotion of outliers shows to be
usefull to predict bug-fixing time. We take these decision based on
the literature support [9, 16, 21]. Another combination of features
can influence models. Features such as severity and priority can
be changed during the process. We decided to use these features
because our work is aimed at classifying the bug early in order to
help the software manager make the decision about the bug as soon
as possible.

9 CONCLUSION
In this study, we proposed features based on the time taken to fix
bugs and related them to the reporter and developer. We compare
these features with reputations which are based on reporter and
developer participation. In our experiment, we can see that the rep-
utation is a relevant feature which might improve the performance
of the models, more specifically, when decision tree models and
initial features are used in conjunction. The ratings features might
improve the performance of probabilistic models like Naive Bayes,
Gradient Boosting and Logistic Regression. Even though ratings
show relevant results only with initial features, we can see that the
best performance was found when combined with textual features.

This study proposes developer reputation and ratings and con-
tributes to improving the understanding of social impact on predic-
tion of bug-fixing time using machine learning models. For future
research we propose using these features utilizing new combina-
tions, as well as deep learning models. We also intend to develop a
model based on rating features.
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