

Integration between Requirements Modeling and Software
Development in the Notification Oriented Paradigm:

A Security System Case Study

Paulo J. D. Novaes1, Jean M. Simão1, Paulo C. Stadzisz1

1Graduation Program in Electrical Engineering and Computer Engineering (CPGEI)
Federal University of Technology - Paraná, (UTFPR), Curitiba - PR - Brasil

pnovaes@alunos.utfpr.edu.br, {jeansimao,stadzisz}@utfpr.edu.br

Abstract. This paper presents the integration between the requirements
modeling approach named Notification Oriented Requirements (NOR) and the
Software Development method known as Notification Oriented Development
(NOD). This integration is demonstrated by means of the case study of a
simulated access control security system implemented in the Notification
Oriented Paradigm (NOP). Results show that the integration between NOR
model and NOD method is possible and facilitates the development of NOP
software, since NOR clarifies the necessary elements to perform the software
structural modeling (class model) and the behavioral modeling (high level
states model and component model).

1. Introduction

Requirements Engineering (RE) refers to the activity of formulating, documenting, and
maintaining systems requirements in order to produce, from users’ needs, a set of
specification related to what the final system should be [YOUNG, 2004]. A requirement
is a statement from the stakeholders’ needs to define a product, a system or a process, and
must be unambiguous, clear, unique, consistent, stand-alone, and verifiable [INCOSE,
2006]. Graphical approaches to enhance requirements specification (among others
system´s characteristics) have gained prevalence, such as the SysML language, which is
used in Model-Based Systems Engineering (MBSE) [FRIEDENTHAL et al., 2014].

 In this context, Notification Oriented Requirements (NOR) emerges as a
requirement modeling approach originated from concepts of the Notification Oriented
Paradigm (NOP) and MBSE [SIMÃO et al., 2016]. In brief, NOP is an alternative
paradigm using rules and notifications for composing software and hardware systems.
Within this paradigm, NOR is a requirements specification approach applicable to both,
software and system development processes. The practical integration between NOR and
software development processes is an important experimentation for its validation.
Currently, the Notification Oriented Development (NOD) method [MENDONÇA et al.,
2015] is suited to develop NOP software. Thus, the following questions arise:

 Is it possible to integrate the NOR modeling approach into the NOD method?
 Are there advantages in integrating NOR and NOD into a NOP application

project? Which are they?

IX Computer on the Beach 432

 To answer these questions, this study starts from a previous NOR model [SIMÃO
et al., 2016], uses the NOD method to design and implement the corresponding NOP
application, and concludes discussing the findings from the case study.

 Therefore, the objectives of this study are to integrate NOR modeling approach
into the NOD method and to identify the advantages of such integration during NOP
application software development.

2. Notification Oriented Paradigm (NOP)

NOP has been improved in recent years by a group of researchers from the Federal
University of Technology - Paraná (UTFPR). It is an alternative approach to develop
software and hardware systems. NOP has several implementation versions in the form of
frameworks and languages [FERREIRA, 2015]. It proposes to solve existing problems in
usual programming paradigms [SIMÃO and STADZISZ, 2008] such as the Declarative
Paradigm (PD) and the Imperative Paradigm (PI) [GABBRIELLI and MARTINI, 2010].
These problems are related to structural and temporal redundancies, and the strong
coupling between computational entities [FERREIRA, 2015].

 The fundamental proposal of NOP consists in the introduction of a notification-
based inference mechanism, presenting a new way of structuring software in small and
decoupled computational entities. These entities includes Fact Base Elements (FBE) and
Rules [SIMÃO and STADZISZ, 2008]. An example of a NOP Rule is shown in figure 1
(a) and the NOP model is shown in figure 1 (b).

Figure 1. (a) NOP Rule. (b) NOP Model. Based on [SIMÃO et al., 2016].

 The Fact Base Element (FBE) stores system facts in Attributes. The FBE may
have Methods that modify these Attributes. Each Attribute when it changes its status
notifies only the related Premises. Similarly, each Premise when it changes its status
notifies only the pertinent Conditions. Each Condition has one or more associated
Premises, that becoming true, approve a Rule. The Rule has an Action, which notifies one
or more Instigations to execute Methods, which in turn modify other Attributes
[MENDONÇA et al., 2015]. This sequence characterizes the NOP inference mechanism,
based on notifications. This mechanism avoids the need for matching and selection
processes in order to execute rules, as usual in Rules Based Systems (RBS).

 Many NOP applications have been developed [SANTOS, 2017]. However, NOP
application development requires new specific software development methods. For this
purpose, techniques such as NOD [WIECHETECK, 2011] and NOR modeling [SIMÃO
et al., 2016] have been developed, which will be presented in the next sections.

3. Notification Oriented Requirements (NOR)

In NOR approach, the fundamental primitives of NOP models are used for graphical
requirements modeling, such as Rules, FBEs, and Notifications (preconditions or

IX Computer on the Beach 433

postconditions). These primitives allow to describe the complete set of functional e non-
functional software/system requirements [SIMÃO et al., 2016]. The NOR modeling
notation is summarized in figure 2.

Figure 2. NOR requirements modeling notation [SIMÃO et al., 2016].

 The NOR technique to construct the requirements model is [SIMÃO et al., 2016]:

 For each requirement in the System Requirements Specification (SRS):
1. To analyze the requirements sentence aiming at:

i) Identifying the functional or non-functional request in the requirement.
ii) Identifying the Conditions for the functional or non-functional request.
iii) Identifying the attributes involved in the Conditions.
iv) Identifying the Actions for the functional or non-functional request.
v) Identifying the functions related to the Methods instigated in the Actions.
vi) Identifying the FBEs related to the Attributes for the request.
vii) Identifying the FBEs related to the Methods indicated by the request.

2. To create a Rule for every request identified in step 1.
3. To create a FBE for every entity identified in step 1.
4. To create links (i.e. notifications between Rules and FBEs according to

conditions and Actions related to rules) identified in step 1.
5. To merge FBEs and Rules with analogous FBEs and Rules previously created.

 The use of NOR modeling was presented in a case study [SIMÃO et al., 2016]
whose requirements were extracted from the INCOSE Systems Engineering Handbook
[INCOSE, 2006]. Six requirements for the given security area access control system are
presented below [SIMÃO et al., 2016]:

 SS11‐a: Secure areas shall be protected by security check based upon employee ID.
 SS11-b: Secure areas shall be protected by a second independent security check

based upon biometric data.
 SS11‐c: The time between the two independent security checks shall not exceed a

configurable period.
 SS11‐d: The user shall be allowed three attempts at biometric identification.
 SS11‐e: The user shall be allowed three attempts at card identification.
 SS11‐f: Any denied access attempt shall be sent to the administrator.

 Based on the NOR technique above, a model for the given security system was
created (figure 3) [SIMÃO et al., 2016] containing 7 requirements in the form of Rules
and 7 entities in the form of FBEs.

IX Computer on the Beach 434

Figure 3. NOR requirements final modeling. Adjusted from [SIMÃO et al., 2016]

 The model above facilitates requirements analysis and implicit knowledge
identification, in addition to making explicit the dependencies between requirements
[SIMÃO et al., 2016]. The next section presents the NOD method propped to conduct
the development of NOP software applications.

4. Notification Oriented Development (NOD)

NOD is a software development method developed specifically for NOP applications
[WIECHETECK, 2011], which consists of an extension of UML diagrams in the form of
a UML profile, that properly represents NOP concepts (NOP profile). In addition, NOD
establishes a sequence of steps to guide NOP software development.

 The NOP profile enables to characterize NOP elements more precisely during
design phase, allowing to particularize UML for a specific domain of applications. This
is done by determining a new syntax and semantics for UML elements using stereotypes,
tagged values, and constraints [WIECHETECK et al., 2011].

 NOD method contains 8 steps (figure 4). The first two steps are: 1. Capture
Requirements and 2. Create Use Case Model. The next six steps focus on software design
through diagrams creation: 3. Class Model; 4. High Level States Model; 5. Component
Model; 6. Sequence Model (optional, not created in this study1); 7. Communication Model
(optional, not created in this study1); 8. Petri Net Model [WIECHETECK, 2011].

Figure 4. Integrating NOR into NOD. Based on [MENDONÇA et al., 2015].

1 The creation of the Sequence Model and Communication model is an optional part of DON method and
was not performed in the current study, without compromising the article results.

IX Computer on the Beach 435

 The method is divided in three cycles (figure 4). In first cycle, the requirements
are documented and the Use Case Model is created. In second cycle, diagrams are created
and requirements are refined as necessary. In third cycle, the models are refined to ensure
compliance with the requirements [MENDONÇA et al., 2015] [WIECHETECK, 2011].

 Software coding can either occur at the end of the method (cascade software
process) or during cycles (incremental software process). The incremental software
process was used in this case study.

5. Case Study: NOD Modeling of a Simulated Security System

The requirements and NOR modeling described previously were used as the basic scope
for this case study. This is the main point of integration between the methods, in which
the NOD 1st Cycle => 1st step Capture Requirements of the NOD method is now
performed by the NOR technique, as pointed out in figure 4.

 The models for this study were created using tools of the Enterprise Architect®
v.13.5 (Sparx Systems) suite by applying the NOP Profile [WIECHETECK et al., 2011],
except for the Petri Net model, created using CPN Tools® v.4.0.1 (Eindhoven University
of Technology).

 Given this, based on NOR modeling, the NOD 1st Cycle => 2nd step Create Use
Case Model was performed and resulted in the model shown in figure 5.

Figure 5. Use Case Model (NOD)

 In NOD 2nd cycle modeling, the following diagrams were created, later refined in
the NOD 3rd cycle (figure 4): 1. Class Model (FBEs definition); 2. High Level States
Model (Rules modeling); 3. Component Model; 4. Petri Net Model.

 The Class Model is presented in figure 6. In addition to the stereotyped class
<<NOP_Application>>, that is a default in NOP applications, stereotyped classes
<<NOP_FBE>> were created for each FBE. In this step, it is possible to notice the
easiness achieved by the previous existence of the NOR model, since it becomes possible
to correlate the FBEs (this does not imply necessarily a 1 to 1 relationship) modeled in
NOR to those included in the Class Model:

 Employee ID Reader (NOR)  ID_Checker (NOD)
 Employee BIO Reader (NOR)  BIO_Checker (NOD)
 System Clock (NOR)  SystemTimer (NOD)
 User Attempts Counter (NOR)  UserAttemptsCounter (NOD)

IX Computer on the Beach 436

 Entry Blocker (NOR)  EntryBlocker (NOD)
 System Config. (NOR)  SystemConfigurator and EmployeeController (NOD)
 Interface with Administrator (NOR)  SysAdminNotificationController (NOD)

Figure 6. Class Model (NOD)

 The High-Level States Model establishes the basic logic of system operation and
bases the identification of NOP Application Rules (figure 7).

Figure 7. High-Level States Model (NOD)

IX Computer on the Beach 437

 While creating the High-Level States Model, the NOR model was used as an aid,
allowing to visually identify states or facts (e.g.: ID Checked, ID Fail, Time OK, Time
Fail, BIO Checked, BIO Fail, etc.) and activities (e.g.: Check employee ID, Check
Elapsed Time, Check Employee BIO, Block Access, Unblock Access, etc.).

 Based on Class and High-Level States models, a Rules Table containing the
Rules, Premises, and Instigations was created (table 1). NOP elements were named using
a standard that facilitates identification during both system design and programming.
Prefixes were used as follows: rl for Rules; pr for Premises; in for Instigations; at for
Attributes and mt for Methods, following definitions given by [RONSZCKA et al., 2017].

Table 1. NOP Rules identified for the System (NOD)

 In parallel to the elaboration of the Rules Table, the Component Model was
generated in a creative synthesis activity subdivided in three steps: 1. Define Rules; 2.
Define Premises and Instigations; 3. Associate Rules to FBEs [WIECHETECK, 2011].

 The existence of NOR modeling facilitated the Rules definition and their
interdependencies. For example, the requirement modeled in NOR “Protect Secure
Areas” (figure 3) which is a disjunction (<<disjunction>>) between “ID Fail”, “Time
Fail”, and “BIO Fail”, was modeled by the NOP Rule rlVerifyTotalAccessDenied, as a
disjunction between the equivalent corresponding premises prAtIDCheckStatusFalse,
prAtBIOCheckStatusFalse, and prAtTimeDifferenceStatusFalse (table 1).

 Seventeen (17) Component Models were created (one for each Rule). The model
for the Rule rlReadID is illustrated as an example in the figure 8. It is possible to notice
the behavior of the Rule (rlReadID), its Premises (prAtIDReadStatusFalse), its
Instigations (inVerifyEmployeeID, inReadID inSetAtIDReadStatusTrue), and the

IX Computer on the Beach 438

methods (mtVerifyEmployeeID, mtReadID, mtSetIDReadStatusTrue) that may be
triggered in the FBEs (EmployeeController, ID_Checker). Besides that, it is possible to
observe the Attributes used by the Rule (atIDReadStatus, atCurrentReadID,
AtEmployeeID).

Figure 8. Rule rlReadID from Component Model (NOD)

 The Petri Net Model used in NOD method demonstrates the dynamics between
NOP elements. Petri Nets (PN) allows to model, simulate and even verify concurrency
and synchronization of resources in systems [CARDOSO and VALETTE, 1997].

Figure 9. Part of the modeled Petri Net Model (NOD)

 In figure 9, part of the Petri Net modeled for this study is shown, in which the
NOP Rules were mapped as PN transitions: rlReadID (TID),
rlVerifyIDIncorrectDenyAccess (T2), rlVerifyIDCorrectProceed (T3) and
rlVerifyIDIncorrectRetry (T1). The PN places (P1, P2, P3, etc.) are representing the
Premises of each Rule. In this model it is possible to notice the concurrency between the
Rules (T1, T2, T3), which is a characteristic of several NOP applications. In the current
study, the Petri Net Model was not executed for validation, which is a possibility for
future works.

6. NOP Framework C++ 2.0 Implementation

The system implementation was performed in Visual Studio 2017® (Microsoft) tool,
according to established development standards for NOP Framework C++ 2.0
[RONSZCKA et al., 2017].

 Figure 10 (a) shows the NOP C++ codes for the Rules
rlVerifyTotalAccessGranted and rlVerifyTotalAccessDenied, in which is possible to

IX Computer on the Beach 439

observe the Premises and Instigations of each Rule. The Rule
rlVerifyTotalAccessGranted is the same as previously shown in figure 1 and table 1.

 Figure 10 (b) shows an execution prompt command regarding the NOP
application, in which is possible to notice some approved Rules (e.g.: rlReadID,
rlVerifyIDCorrectProceed, rlReadBIO) that executed the corresponding Methods (e.g.:
mtSetIDReadStatusTrue, mtSetIDCheckStatusTrue).

Figure 10. (a) Part of NOP Rules Code (b) NOP Application Execution

 Similarly to what was reported in [MENDONÇA et al., 2015] and
[WIECHETECK, 2011], it is noted that the creation of a well-structured NOD project
allows a near-mechanical implementation in the NOP C ++ 2.0 Framework, as may be
observed in the corresponding artifacts and codes. Likewise, the NOR project facilitated
the project in NOD, due to the visual inputs provided by the requirements model.

7. Discussion and Conclusion

In this case study, the integration between the NOR model into the NOD method was
performed during the development of a NOP application. By presenting system
requirements graphically, NOR aids to the development of NOP software in three steps:

1. In the Class Model creation (system structure).
2. In the High-Level States Model creation (system behavior).
3. In the Rules Table and Component Model creation (specific tailored

behavior of NOP application Rules)

 Therefore, it can be concluded that the NOR modeling can be harmoniously
integrated to the NOD method, facilitating the development of Software Engineering
design for NOP applications. This would lead to future works on engineering-oriented
requirements models such as SysML. It is also suggested the refinement of NOR
modeling techniques through a specific study of interrelationships between requirements.

Acknowledgements

The authors would like to thank CAPES/CNPq from Brazil by the financial support and
to UTFPR by all the support and infrastructure provided.

Referências

[CARDOSO and VALETTE, 1997] Janette Cardoso e Robert Valette. Petri Nets.
Original title: Redes de Petri. Florianópolis, Ed. da UFSC, p. 212, 1997.

[FERREIRA, 2015]. Cleverson A. Ferreira. Language and Compiler for the Notification
Oriented Paradigm: Advances and Comparisons. Original title: Linguagem e

IX Computer on the Beach 440

Compilador para o Paradigma Orientado a Notificações: Avanços e Comparações.
Dissertação de Mestrado. PPGCA/UTFPR, Curitiba, Brasil, 2015.

[FRIEDENTHAL et al., 2014] Sanford Friedenthal, Alan Moore, Rick Steiner. A
Practical Guide to SysML: The Systems Modeling Language. The Morgan Kaufmann
/ OMG Press, 3rd Ed., 2014.

[GABBRIELLI and MARTINI, 2010] Maurizio Gabbrielli e Simone Martini.
Programming Languages: Principles and Paradigms. Series: Undergraduate Topics
in Computer Science. 1st Edition, XIX, 440 p., Softcover, 2010.

[INCOSE, 2006] INCOSE Systems Engineering Handbook: A Guide for System Life
Cycle Processes and Activities. International Council on Systems Engineering, C.
Haskins. (Ed.), Version 3, 2006.

[MENDONÇA et al., 2015] Igor T. M. Mendonça, Jean M. Simão, Luciana V. B.
Wiecheteck, Paulo C. Stadzisz. Development Method for Rule-Based Systems using
the Notification Oriented Paradigm. Original title: Método para Desenvolvimento de
Sistemas Orientados a Regras utilizando o Paradigma Orientado a Notificações. Cong.
Bras. Inteligência Computacional, (12), 1–6., 1 CD–ROM. Curitiba, Brasil, 2015.

[RONSZCKA et al., 2017] Adriano F. Ronszcka, Glauber Z. Valença, Robson R.
Linhares, João A. Fabro, Paulo C. Stadzisz, Jean M. Simão Notification-Oriented
Paradigm Framework 2.0: An Implementation Based on Design Patterns. IEEE Latin
America Transactions, Volume 15, Issue 11, pp. 2221-2232, Nov 2017.

[SANTOS, 2017] Leonardo A. Santos. Language and Compiler for Notification Oriented
Paradigm: advances in coding and validation for a Robotic Soccer application.
Original title: Linguagem e compilador para o paradigma orientado a notificações:
avanços para facilitar a codificação e sua validação em uma aplicação de controle de
futebol de robôs. Dissertação de Mestrado, CPGEI/UTFPR. Curitiba, Brasil, 2017.

 [SIMÃO and STADZISZ, 2008] Jean M. Simão e Paulo C. Stadzisz. Notification
Oriented Paradigm – A Technique for Notification Oriented Software Composition
and Execution. Original title: Paradigma Orientado a Notificações – Uma Técnica de
Composição e Execução de Software Orientado a Notificações. Patente. INPI, 2008.

[SIMÃO et al., 2016] Jean M. Simão, Hervé Panetto, Yongxin Liao, Paulo C. Stadzisz. A
Notification-Oriented Approach for Systems Requirements Engineering. 23rd IPSE
International Conference on Transdisciplinary Engineering, Curitiba, Brazil. IOS
Press, 4, pp.229-238, Oct 2016.

[WIECHETECK et al., 2011] Luciana V. B. Wiecheteck, Jean M. Simão, Paulo C.
Stadzisz. A UML Profile for Notification Oriented Paradigm. Original title: Um Perfil
UML para o Paradigma Orientado a Notificações. Anais do III Congreso Internacional
de Computación y Telecomunicaciones, pp. 1-16., Peru, 2011.

[WIECHETECK, 2011] Luciana V. B. Wiecheteck. Software Development Method using
the Notification Oriented Paradigm. Original title: Método para Projetos de Software
usando o Paradigma Orientado a Notificações. Master Thesis, CPGEI/UTFPR.
Curitiba, Brasil, 2011.

[YOUNG, 2004] R. R. Young. The Requirements Engineering Handbook. 1st Ed., Artech
House, Boston, 2004.

IX Computer on the Beach 441

