
Marlon Diego Casagranda França
ASAAS Gestão Financeira SA

Joinville, SC, Brasil
marlondiego407@gmail.com

Eduardo da Silva
Instituto Federal Catarinense

Araquari, SC, Brasil
eduardo.silva@ifc.edu.br

ABSTRACT
With the growth of mobile devices claiming an increasing share of
internet traffic, optimizing data search performance becomes im-
portant. REST architecture has been the most common solution to
developWeb APIs, but GraphQL is becoming, recently, an attractive
alternative. This paper discusses the REST and GraphQL techniques
for data communication between Web applications. An experiment
is also performed, to evaluate the performance of APIs implement-
ing REST and GraphQL when requesting nested objects. Prototypes
of each API were implemented to perform measurements of each
technique’s performance. Results show that GraphQL performed
better in the most evaluated scenarios.

a reduction of up to 7% in conversion rates. If considering an e-
commerce portal with $100,000.00 mensal invoicing, such delay
may imply a loss of $84,000.00 along a year.

In this context, in recent years there has been a shift to an Inter-
net data computing model called client / server, that addresses the
failures of the centralized computing. Recently, there has been an
advance in the number of public Application Programming Inter-
faces (APIs) driven by the transition in the distributed application
communication model, which has now made extensive use of the
HTTP protocol for web-based information exchange [6]. Consider-
ing this new web application development model, the adoption of
REpresentational State Transfer (REST) as the predominant method
to build APIs has obfuscated any other technology or approach [8].
Although several alternatives (mainly SOAP) are yet in the devel-
opement market, adepts of the SOA model to build applications
have choosed the REST as the communication model and the JSON
as the message format [5].

However, the increased use of REST has exposed some limita-
tions, that harmed the performance of such APIs in crucial aspects.
In general, clients with complex routines require nested object
searches with multiple relationships. Due to the characteristics of
a REST API, that exposes resouces exclusively, it is necessary to
perform several searches on the server before some routines be
processed by the client, since not all information is sent in a single
reply message. Also, most of these calls will return unnecessary
data to the routine context that executed it, which is known as
over-fetching. Thus, multiple solutions have been proposed to in-
crease the efficiency of data search, ones considering the requests
and replies formats, while other ones are optimizing the number of
requests in the network. A recent trend involves a declarative data
query model, in which client applications specify data they need.
Then, such models optimized the communication with server to
get data in a efficient way. This is the purpose of GraphQL, which
aims to mitigate some chronic problems of REST design, such as
APIs versioning, multiple round trips and excessive data traffic on
the network.

This paper aims to identify the differences, in terms of load
time, amount of data traffic, and resource consumption, between
REST and GraphQL applications. To achieve this, two prototypes
of API are created, one implementing the REST design and the
other one using GraphQL as a mechanism to respond to queries.
The performance of both APIs is measured based on quantitative
metrics and the analysis of the obtained results is discussed.

The remainder of this paper is organized as follows: Section 2
presents the main protocols for communication between Web ap-
plications, from traditional Remote Procedure Call (RPC) to current

Performance Evaluation of REST and GraphQL APIs
Searching Nested Objects

KEYWORDS
Information, GraphQL, Rest, Queries, Neasted

1 INTRODUCTION
In an increasingly interconnected world, users require increased
availability, with low access latency, of information accessed on the
Web. With the expansion of the Internet to heterogeneous devices,
such as smartphones, tablets and IoT devices, issues concerning
load time and bandwidth consumption are becoming more relevant.
A recent study shows that the Internet access from mobile devices
grew by 63% in 2016. Also, mobile data traffic grew from 4.4 exabytes
per month in 2015 to 7.2 exabytes per month in 2016. This increase
is the result of joining about 429 million new mobile devices to
the network, being the smartphones responsible for most of this
growth [3].

In addition, it is known that users consider more important the
speed they receive information than its aesthetics [12]. The load
time is a decisive factor to the users permanance in a web site,
since the most users are willing to wait from 6 to 10 seconds before
abandon any web site. In fact, every second delay can result in

Figure 1: RPC’s information flow

However, despite being a widely used technique in many dis-
tributed systems, RPC has several limitations. For example, differ-
ent RPC implementations are, in general, incompatible. In addition,
such an approach has other technical and performance limitations,
such as different parameter structures, lack of parallelism, and lack
of standardization.

An advance to RPC is the use of Simple Object Access Proto-
col (SOAP), a protocol for message exchange in decentralized and
distributed environments. It is XML-based, and consists of three
parts: a header that describes the content of transmitted messages
and how to process them, a set of coding rules for expressing in-
stances of data types defined by an application, and a convention for
representing remote calls and their answers [2]. In general, SOAP

eliminates some of the complexities found in RPC implementations.
For example, the use of SOAP, further the standardization of the
structure of message structures using XML, allows communication
between protected systems without opening additional ports, re-
duces errors since XML format is more easily read and understood,
is cross-platform, and can be used with various data transport pro-
tocols, such as HTTP, SMTP, and FTP. On the other hand, while
XML is extremely robust, its use can degradate the performance in
terms of coding and decoding speed, and increase the message size.

Altough this standard of messages format had advantages when
compared with previous technologies, it also brought a number
of limitations as its popularity emerged. Thus, the need to search
for alternatives to overcome these problems increased, and new
formats were emerging, and among then, the JavaScript Object
Notation (JSON) format stands out.

2.2 REpresentational State Transfer
The REpresentational State Transfer (REST) is an architecture de-
sign based on a set of principles that describe how network re-
sources are defined and addressed. The adoption of REST as the
predominant method for building public APIs has obfuscated any
other technology or approach in the recent years. The simplicity of
REST, which deals only with data structure and transport, along
with its natural fit over the HTTP, has made it the choosed method
for Web 2.0 applications to expose their data [1].

The Richardson Maturity Model describes the requirements to
develop a well-structured REST API and compliant with the con-
straints defined by the architecture. The better the API adheres to
the constraints – client/server, stateless, cache, uniform interface,
layered systems, or code on demand – the better it will be scored [4].
Richardson’s model describes 4 levels (0-3), in which the level 3
designates a truly RESTful API.

However, with the evolving and increasing complexity of APIs,
communication via the REST protocol has often proved unfeasible.
This is consequence of the REST implementation, that requires the
execution of multiple requests, between clients and servers, to get
complex objects with nested attributes. Also, REST implementations
can encourage the practice of overfetching, that is, when the client
fetches some information from the server and the response contains
more information than the client needs. Another difficulty is the
API versioning, which occurs when there are significant changes
to API, subject to code breaking in consumer clients.

2.3 JSON/Graphs-based architectures
Recently, a new architectural design has been gaining attention of
developers, filling some gaps that previous architectures have left.
GraphQL is a query language, created by Facebook in 2012, that
provides a common client-server interface for data manipulation
and fetching. It uses a system called client-specified queries, in
which the response format of a request is defined by the client.
Thus, since the data structure is not coded, the server data query
becomes more efficient for the client [9].

Also, queries using GraphQL always return only what was pre-
defined by the request. So its answers are predictable. GraphQL
queries not only access the properties of a single resource, but
also follow the references between them. As a consequence, while

XI Computer on the Beach
2 a 4 de Setembro de 2020, Baln. Camboriú, SC, Brasil

REST and GraphQL; Section 3 describes how the prototype for com-
paring REST and GraphQL APIs was developed; Section 4 describes
the metrics used and the results; Finally, section 5 presents the final
considerations.

2 INTER-APPLICATION COMMUNICATION
In this section some of the main protocols for communication be-
tween applications are presented. Initially, some RPC and Simple
Object Access Protocol (SOAP) approaches, which today are los-
ing the development market, but played a very important role in
the evolution of Service-Oriented Architecture (SOA)-based sys-
tems. Then, is presented a description of the REST and GraphQL
communication models, which are the approaches of the present
work.

2.1 RPC and SOAP communications
Remote Procedure Call (RPC) is a mechanism in which an applica-
tion requests service from another application that is on another
computer, usually connected through a network. A RPC requires
a given X application to send one or more messages to another Y
application in order to invoke a procedure from the Y application,
that responds with one or more messages [7]. The fundamental
idea of RPC is to be transparent, so that the client is not aware
that the called procedure is executed on a different computer or
vice-versa [10]. This flow of information can be seen in the Fig. 1.

 França et al.

238

Figure 2: WMS modelling

typical REST APIs require loading multiple URLs, GraphQL APIs
get all the data they need in a single request.

On the other hand, a major threat that GraphQL facilitates is the
denial of service attacks [11]. A GraphQL server can be attacked
with an excessive number of complex queries that may to consume
all server resources. This type of attack is not GraphQL-specific,
but in such case extra caution is needed to avoid them. There are,
however, some procedures that, if implemented, can mitigate the
threat of denial of service. You can previously perform a cost anal-
ysis of the query and impose a threshold of the amount of data a
request can consume. You can also implement a timeout, in which
the requests that take a long time to resolve are deleted from the
execution queue.

3 CASE STUDY
For a real-world example, a case study was designed based on a
Warehouse Management System (WMS) application. In order to
perform relevant queries, a schema containing six entities was
modeled, representing real queries and producing information for
a performance analysis. The modeling of figure 2 represents the
management of a warehouse with capacity to store several items.
Items are placed in pallets and allocated at addresses within the
warehouse.

Consider a code item 22B12, for example, that represents a given
productX . This product is placed in a pallet that can hold 30 units of
item 22B12. The warehouse consists of 26 shelves, sequenced from
“A” to “Z”. Each shelf consists of two depth lines and three height
levels. A pallet with code 001 contains 30 units of item 22B12, and
needs to be allocated into the warehouse. For this, a code system
involving the three dimensions of the warehouse is employed.

Thus, 60 units of item 22B12 are placed on two pallets (001, 002)
in the warehouse, and each pallet will be assigned to an address.
The pallet 001 will be allocated to the third shelf, the second level
and the first row. After address formation, pallet 001 will be located
at address C0201, shelf C , level 02 and line 01.

Based on a WMS system, two APIs prototypes are implemented.
The first is implemented using the best practices of REST design,
while the second one is on GraphQL. The performance of such
prototypes is compared to each other.

3.1 Assumptions and hypotheses
The assumptions on the performance difference between the APIs
derived from the theoretical foundations. They are based on the
understanding that the protocols allow the implementation of a
combination of techniques to positively affect the performance
of the API. Therefore, both implementations must have the same
properties, following their best practices, maturity models, and
documentation.

The hypotheses of this work are:
(1) Response size will be smaller using GraphQL;
(2) Response time will be shorter using GraphQL;
(3) CPU utilization time will be shorter using REST;
(4) Memory consumption will be lower using REST;
In order to validate the defined hypotheses, two questions in-

volving all entities were determined. For each question there is only
one correct answer and its logic is based on fields of the return data
structures.

Question 1: Which item occupies the largest amount of pallets
allocated in the warehouse?

Question 2: Item code 22B12 is stored in which addresses?
Thus, searches will be performed in both the REST and the

GraphQL API in order to retrieve the information needed to formu-
late the answers. To perform these searches, measure the perfor-
mance of such APIs processing their responses, and compare them,
some tools were used during this work. These tools are described
in the section 3.2.

3.2 Used tools
Choosing of the tools to be used for implementation is one of the
most important parts of the case study planning. The APIs are

XI Computer on the Beach
2 a 4 de Setembro de 2020, Baln. Camboriú, SC, Brasil França et al.

239

1 //item.controller.js
2 import I tem from '../ models/item.model' ;
3
4 function l o ad (req , res , next , i d) {
5 I tem . g e t (i d)
6 . then ((i t em) => {
7 req . i t em = i tem ;
8 return next () ;
9 })
10 . f i n a l l y (e => nex t (e)) ;
11 }

In turn, listing 2 shows how Express.js manages the request
received via the GET method, and delegates responsibility for
schema.js, where is the logic for interpretation of request parame-
ters, and returns a JSON object with the appropriate response.

Listing 2: Express handling routes to GraphQL
1 // server.js
2 import e xp r e s s from 'express ' ;
3 l e t app = exp r e s s () ;
4
5 import schema from './ schema.js' ;
6
7 app . g e t ('/' , (req , r e s) => {
8 g raphq l (schema , req . query . query)
9 . then ((r e s u l t) => {
10 r e s . send (r e s u l t) ;
11 }) ;
12 }) ;

Some tools are used as clients of the built APIs, and execute
queries. Postman software is primarily used for performing API
searches. Along with the query response, Postman provides infor-
mation such as the time required for the response and its size, in
bytes. These features, combined with the option to perform a cus-
tomizable number of iterations for each request, are the basis for
evaluating the performance of both the REST and GraphQL APIs.

3.3 Scenario
The APIs were built to respond to requests, returning responses in
the JSON format to generate a performance measurement factor of
the test execution. For the execution of the experiment, only the
necessary applications are kept active. Therefore, when performing
the searches, either the REST or the GraphQL server will be active,
as well as the MongoDB database server and the Postman client
application.

The REST server consists of a HTTP server written in JavaScript
an running on a Node.js server that receives HTTP requests. De-
pending on the method and URL of the request, the server routes it
to the corresponding controller. Then, controller queries the Mon-
goDB database, and records the appropriate latency data. After the
processing, the response is sent to the customer. For measurements,
the client application sends, for example, a request to retrieve all
registered items. As can be seen from Table 1, it must perform a
/item search, which is interpreted by the REST server. The server
queries the database by returning a response in JSON format, with
all items registered in the API.

URI Descrição
/item Query items list
/item/:id Query an item by id
/pallet Query pallets list
/pallet/:id Query palley by id
/address Query addresses list
/address/:id Query address by id
/slot Query shelves list
/slot/:id Query shelf by id
/row Query rows list
/row/:id Query row by id
/level Query levels list
/level/:id Query level by id

Table 1: REST server

The GraphQL server was also implemented using the Node.js.
The difference compared to the REST server implementation is that
the GraphQL server sends all requests to its core, rather than routing
incoming requests to many different controllers. GraphQL parses
the query and sends the parameters to the responsible resolvers
located in the schemas. These functions are performed when the
corresponding fields are queried and the results are returned in
the response. To retrieve some information in the GraphQL API, it
must make a request using the HTTP GET method with the desired
query. The API processes the query and returns an JSON object.
The query illustrated in the code snippet of listing 3 request the list
of all items stored in the database. Note, that the answer contains
only the attributes the query requested – the items id description.

3.4 Metrics
Four metrics were defined to compare the performance measures
of APIs developed in REST and GraphQL. The metrics are: CPU
utilization time, memory consumption, response time and response
size. Note that each metric was measured separately so that logs
and outputs related to a specific metric do not interfere on the
results of the other ones.

XI Computer on the Beach
2 a 4 de Setembro de 2020, Baln. Camboriú, SC, Brasil

written in JavaScript using the ECMAScript 5 specification, which
allows the access to tools for building web services, such as Node.js,
used in this study. MongoDB, which adopts an object-oriented data
model, is used for data persistence.

In order to simplify the construction of web server applications,
the Express.js framework is used. In the developed prototypes,
Express.js acts as a middleware that manages routes and delegates
responsibility for interpreting requests to the Controllers in the
REST API and to the Resolvers in the GraphQL API.

The listing 1 illustrates how Controllers send request information
to the model, which is responsible, in the REST API, for executing
the queries in the database. In the example, the code snippet returns
an “Item” based on the received id as a request parameter. Note that
in line 2 the “Item” entity model is imported for use in the Controller,
and in line 4, the get method, whose logic is implemented within
the model, is invoked by passing the id as parameter.

Listing 1: Controller to get an item

 França et al.

240

1 query RootQuery {
2 i t ems {
3 i d
4 d e s c r i p t i o n
5 }
6 }
7 {
8 "data" : [
9 {
10 "id" : 22B12 ,
11 "description" : "Flat␣screen"
12 } ,
13 {
14 "id" : 21C44 ,
15 "description" : "Computer␣screen"
16 } ,
17 {
18 "id" : 43 F12 ,
19 "description" : "Smartphone␣screen"
20 } ,
21]
22 }

Listing 3: Items resquest and response

The definition of each metric is detailed as follows:
• CPU utilization time: time, in miliseconds (ms), in which
a CPU processed the instructions. It is extracted through
process module of Node.js core. This metric can be defined as

CPU =

∑
∆cpu

n
,

in which n is the number of CPUs and ∆cpu is the CPU use
time by the application.

• Memory consumption: memory, in megabytes (MB), used
by the API in each search. It can be defined as

Mem =
m

M
∗ 100,

in whichm is the amount of memory used by the application
andM is the total amount of memory.

• Response time: time gap, inmiliseconds (ms), between each
resquest and its respective response. In case of RESTAPI, this
metric considers all the needed requests. It can be defined as

∆t = T 2 −T 1,

in which T 1 and T 2 respresent, respectively, the request and
the response time.

• Response size: size, in bytes, of the response. In case of the
REST API it considers the mean of the sum of all searches.
It can be defined as:

Size =
n∑

ti,

in which ti is the size of each response and n is the total
number of requests.

Figure 3 shows how the metrics will be extracted. CPU utilization
and memory consumption will be measured using Node.js tools,
via logs in the prototype source code. Response size and response
time will be extracted using the Postman tool at the end of queries.

Figure 3: APIs architecture and the different measure points

4 RESULTS
The results obtained in the validation tests present the average of
the values collected after executing 30 iterations for each request.
Three scenarios were also set up for better analysis of the results.
These scenarios have different record quantities for the Item and
Pallet entities, as they are the ones that most significantly affect
how efficient is the performance of the APIs. The three scenarios
are described in the table 2.

Resource Scenario 1 (S1) Scenario 2 (S2) Scenario 3 (S3)
Item 1000 10000 30000
Pallet 1000 10000 30000
Address 156 156 156
Slot 26 26 26
Row 2 2 2
Level 3 3 3

Table 2: Analyzed scenarios

Queries were based on a real use case from a WMS system and
aimed to answer the following question:What are the addresses con-
taining Item 22B12. Results obtained in the validation tests present
the average of the values collected after several executions of the
scenarios in a sequential way. By analyzing the results, it is possible
to identify the difference in the performance of APIs, highlighting
the difference in the obtained size of the response .

4.1 Question 1
Although it needs simpler searches, through Question 1 is already
possible to see the performance differences between REST and
GraphQL applications. Question 1 looks for the itemwith the largest
amount of pallets allocated in the warehouse. To answer it is re-
quired two steps: the first one searches all pallets registered in the
system, and after identifying the most common item in the pallets,
the second step details such an item.

4.1.1 CPU utilization time. By analyzing the CPU utilization time,
illustrated in the figure 4, it can be seen that both API, REST and

XI Computer on the Beach
2 a 4 de Setembro de 2020, Baln. Camboriú, SC, Brasil França et al.

241

Request Result # of requests
/items Item 22B12 ID 1
/items/:id Item 22B12 details 1
/pallets Pallets with item 22B12 1
/pallets/:id Details of the Pallet withitem 22B12 5
/addresses/:id Detais of address with item 22B12 5
/levels/:id Level with item 22B12 5
/slots/:id Shelf with item 22B12 5
/rows/:id Row with item 22B12 5

Table 3: Data flow to get the results

GraphQL, have similar performance in scenarios S1 and S2. On the
other hand, queries from scenario S3 demonstrate that REST API
is less efficient, requiring more CPU time.

Figure 4: Comparison of CPU utilization time

Note that REST API required 133.80 ms of CPU to perform S1
queries, while the GraphQL API required 111.10 ms. When consid-
ering the scenario S2, the REST API was processed at 1042.52 ms
while the GraphQL API took 1065.45 ms. We noted that in sce-
nario S2, both APIs presented the most similar CPU utilization time.
Finally, when analyzing the S3 scenario results, there is a major
disadvantage for REST API, which used 3177.60 ms of CPU while
the GraphQL API used only 2382.10 ms, a difference of about 25%.

4.1.2 Memory consumption. Results of memory consumption com-
parison show that the REST API is also less efficient than the
GraphQL API. The results can be seen in the figure 5.

When comparing the results of S1 and S3 scenarios, the REST
API proved to be about 15% less efficient than the GraphQL API.
The difference is more relevante when comparing the S2 results, in
which the GraphQL API consumed 127.71 megabytes of memory
and the REST API consumed 178.01 megabytes, a difference of
approximately 30%.

4.1.3 Response time. As expected, the API implemented by using
GraphQL actually responded to queries in a shorter time than the
REST API. Figure 6 shows the difference in the APIs response time
to execute the queries of the first question.

In the requests of scenario S1, the RESTAPI resulted in a response
time of 147.23 ms, while the GraphQL API answered the query in
115.63 ms, representing a difference of 21%. When analysing the

Figure 5: Memory consumption comparison

Figure 6: Response time comparison

queries of scenario S2, the REST API answered such queries at
1108.13 ms and the GraphQL API returned the results at 925.63 ms,
a difference of 16%. Finally, queries of scenario S 3were answered
at 2261.10 ms in the REST API and 1725.70 ms in the GraphQL API,
which represents a difference of 23%.

For the response time we extracted another graph, which can be
seen in the figure 7, which illustrates the response time for each of
the 30 requests in both the APIs. This graph is based on the queries
for scenario S1, and helps to explain the response time behavior of
each API. Note that in both the prototypes the first request takes a
much longer time than the average time. This happens since in the
first request the API needs a warmup time to be at full performance.
This warmup period occurs only on the first request, and the next
requests are already much faster.

4.1.4 Response size. Another expected result was that the GraphQL
API response size was smaller than the REST API response size.
This hypothesis was confirmed as can be seen in the figure 8.

The REST API answered the requests from Question 1 with a re-
sponse size of 174.04 kilobytes, 1740.17 kilobytes, and 4980 kilobytes
for scenarios S1, S2, and S3, respectively. Similarly, the GraphQL
API resulted in responses of 31.68 kilobytes, 322.53 kilobytes, and
967.35 kilobytes. Comparing the three scenarios shows a constant
difference of about 80% between the REST API and the GraphQL
API.

XI Computer on the Beach
2 a 4 de Setembro de 2020, Baln. Camboriú, SC, Brasil França et al.

242

Figure 7: Response time

Figure 8: Response size comparison

4.2 Question 2
For the answers to question 2, the queries were more complex in
the GraphQL API and more numerous in the REST API. These
queries show which addresses contain Item 22B12, and the results
allow us to identify the biggest performance difference of the APIs,
highlighting the size of the response used.

4.2.1 CPU utilization time. The graphic in figure 9 illustrates the
CPU utilization time results. Note that GraphQL API uses this fea-
ture more efficiently than REST API. In the evaluated scenarios, the
difference in the obtained results is more clearly noted as the num-
ber of records increases. Analyzing scenario S1, REST API required
244.41 ms of CPU time to process, while the GraphQL API re-
quired only 178.22ms. In queries of scenario S2, REST API required
1787.74 ms to process, and the GraphQL API required 1199.53 ms.
However, the biggest difference is in scenario S3, in which RESTAPI
required 5383, 40 ms to be processed by the CPU and the GraphQL
API only 3132, 98 ms, a difference of more than 40%.

4.2.2 Memory consumption. Memory consumption results are il-
lustrated in the graphic of figure 10, which indicates that REST API
makes a less efficient use of this feature. In requests of scenario S1,
the REST API proves to be more efficient even though the difference
is only 9.88 megabytes (about 12%) from the GraphQL API. The
GraphQL API consumed 76.19 megabytes of memory, compared to
66.27 consumed by the REST API. However, this better efficiency
is no longer identified in the scenario S2, in which the REST API

Figure 9: Comparison of CPU utilization time

consumed 181.02 megabytes of memory, and the GraphQL API
consumed 26% less, 133.52 megabytes. In scenario S3, there is a
more significant difference, with the REST API consuming 300.30
megabytes of memory while the GraphQL API consummed 206.02
megabytes, a difference of almost 30%.

Figure 10: Memory consumption comparison

4.2.3 Response time. As the graph in figure 11 illustrates, the REST
API takes a longer time to respond all requests when compared with
the GraphQL API. Considering the queries of scenario S1, the REST
API required a response time of 254.56 ms, while the GraphQL API
answered the queries at 148.50 ms, a difference up to40%. When
analyzing the requests of scenario S2, the REST API answered
the queries at 2072.03 ms and the GraphQL API at 1201.30 ms, a
difference of 42%. Finally, queries of scenario C3 were answered at
4770.20 ms in the REST API and at 2291.10 ms in the GraphQL API,
which represents a difference higher than 50%.

The graphic in figure 12 shows the response time for each of
the 30 requests. This result considers the scenario S1, and details
the response time behavior. You can see that the first request takes
a longer time than average, since the API needs a warmup time
needed to be at full performance. The REST API answers the first
request in almost 500 ms, while the GraphQL API in approximately
400 ms. This difference of approximately 100 ms is maintained over
the course of requests, and the GraphQL API is slightly more stable
than the GraphQL API, with smaller oscillations.

XI Computer on the Beach
2 a 4 de Setembro de 2020, Baln. Camboriú, SC, Brasil França et al.

243

Figure 11: Response time comparison

Figure 12: Response time

4.2.4 Response size. The graphic in figure 13 shows that the API
developed by using GraphQL also proved to be more efficient in
response size, which directly affects the network cost. The REST
API responded to requests with an average response size of 259.73
kilobytes, 2522.17 kilobytes, and 7221.00 kilobytes for scenarios
S1, S2, and S3 respectively. The GraphQL API had responses with
101.73 kilobytes, 1005.23 kilobytes, and 2850.00 kilobytes. The per-
formance difference between the APIs was about 60% in all the three
scenarios, making it clear that GraphQL API is more efficiency.

Figure 13: Response size comparison

5 CONCLUSION
With more interconnected devices, efficient communication be-
tween applications is an issue that is constantly debated and evolv-
ing. Computational resources such as memories and processors,
although gradually more accessible, still demand concern regarding
their sustainable use. This paper presented concepts and models of
communication between applications, namely REST and GraphQL.
Experiments were performed to compare them in terms of response
time, amount of used bandwidth and computational resource con-
sumption.

At the end of the work, we concluded that both technologies
offer a practical and efficient solution to the same problem, however
GraphQL presents itself as a great alternative as a communication
mechanism between applications. Ease of use, lower bandwidth
and computational resources contribute to GraphQL being a tool
widely used in the future by organizations and developers. In ad-
dition to the performance presented criteria, GraphQL helps to
maximize application development productivity, resulting in im-
proved Developer Experience (DX), an area that is increasingly
gaining dedication and importance.

However, the maturity of the GraphQL ecosystem is still much
discussed by the community. Future work could address how using
JSON / Graphs-based architectures can optimize software develop-
ment not only in a quantitative but also qualitative metric, consid-
ering the Developer Experience. Other work may also address the
advantages of strongly typed communication, such as GraphQL, or
whether categories theory can be applied with the GraphQL.

REFERENCES
[1] Robert Battle and Edward Benson. 2008. Web Semantics: Science, Services and

Agents on the World Wide Web. BBN Technologies, Arlington, VA, USA.
[2] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. Nielsen, S.

Thatte, and D. Winer. 2000. Simple Object Access Protocol (SOAP) 1.1. W3C
Consortium.

[3] Cisco. 2017. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast
Update, 2016–2021 White Paper. Technical Report. Cisco CO.

[4] Roy Thomas Fielding. 2000. Architectural Styles and the Design of Network-
based Software Architectures. Ph.D. Dissertation. University of California, Irvine.
AAI9980887.

[5] Ole Lensmar. 2013. Is REST losing its flair - REST API Alternatives. https:
//goo.gl/bPm1ez

[6] Mateus Maso. 2016. Um Modelo de Comunicação para Automação na Execução de
Consultas de Dados sobre APIs Web. Ph.D. Dissertation. Universidade Federal de
Santa Catarina.

[7] P. Merrick, S. Allen, and J. Lapp. 2006. XML remote procedure call (XML-RPC).
Patent. https://www.google.com/patents/US7028312 US Patent nr. 7,028,312.

[8] A. Neumann, N. Laranjeiro, and J. Bernardino. 2018. An Analysis of Public REST
Web Service APIs. IEEE Transactions on Services Computing Early Access (2018).
https://doi.org/10.1109/TSC.2018.2847344

[9] Nick Schrock. 2015. GraphQL Overview. https://goo.gl/wX2VJ8
[10] Andrew S. Tanenbaum and Maarten van Steen. 2007. Distributed Systems: Princi-

ples and Paradigms (2 ed.). Pearson Prentice Hall, Upper Saddle River, NJ.
[11] Maximilian Vogel, Sebastian Weber, and Christian Zirpins. 2018. Experiences on

Migrating RESTful Web Services to GraphQL. In Service-Oriented Computing –
ICSOC 2017 Workshops, Lars Braubach, Juan M. Murillo, Nima Kaviani, Manuel
Lama, Loli Burgueño, Naouel Moha, and Marc Oriol (Eds.). Springer International
Publishing, Cham, 283–295.

[12] Sean Work. 2018. How Loading Time Affects Your Bottom Line. Disponível em
https://goo.gl/xUpdJ8. Acessado em out de 2018.

XI Computer on the Beach
2 a 4 de Setembro de 2020, Baln. Camboriú, SC, Brasil França et al.

244

https://goo.gl/bPm1ez
https://goo.gl/bPm1ez
https://www.google.com/patents/US7028312
https://doi.org/10.1109/TSC.2018.2847344
https://goo.gl/wX2VJ8
https://goo.gl/xUpdJ8

	Abstract
	1 Introduction
	2 Inter-application communication
	2.1 RPC and SOAP communications
	2.2 REpresentational State Transfer
	2.3 JSON/Graphs-based architectures

	3 Case study
	3.1 Assumptions and hypotheses
	3.2 Used tools
	3.3 Scenario
	3.4 Metrics

	4 Results
	4.1 Question 1
	4.2 Question 2

	5 Conclusion
	References

