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ABSTRACT

Java developers make extensive use of code annotations since
their introduction in version 5 of the language. They are
inserted directly on the source code for custom metadata con-
figuration, similar to C# attributes. The software engineering
community has few works investigating their usage and im-
pact on source code. Being able to visualize characteristics of
code annotations might aid developers in detecting potential
misuse, outliers as well as increase the comprehensibility and
readability of the source code. In this paper, we present an
approach to use software metrics to generate a 2D polymetric
view targeting the visualization of code annotations in Java
classes. We developed a prototype tool using the Unity Game
Engine. It displays classes and packages as rectangles and
annotations as circles. We demonstrated the tool with a small
sample Java program.
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1 INTRODUCTION

Enterprise Java frameworks and APIs such as JPA (Java
Persistence API), Spring, EJB (Enterprise Java Bean), and
JUnit make extensive use of code annotations as means to
allow applications to configure custom metadata and execute
specific behavior. Observing the top 30 ranked Java projects
on GitHub, they have, on average, 76% of classes with at
least one annotation. Some projects may have more than
90% of its classes annotated. To measure code annotations
usage and analyze their distribution, our previous work [1]
proposed a novel suite of software metrics dedicated to code
annotations, and to obtain threshold values from a Percentile
Rank Analysis approach [2]. A version for the C# attribute
was also performed by [3].

Source code metrics can retrieve information from software
to assess its characteristics. Well-known techniques use met-
rics associated with rules to detect bad smells on the source
code [4, 5]. Using metrics values as mere numbers presented
on tables might not be very useful in software comprehen-
sion. Also, having to inspect source code to understand these
values requires effort. As some systems may have hundreds
of thousands of lines that are poorly documented, there is a
need for practical approaches to aid developers in software
understanding and bug detection [6].
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Software visualization is being extensively investigated and
successfully adopted to deal with existing software and to im-
prove software comprehensibility [7, 8]. Lanza and Ducasse [6]
proposed the polymetric view concept, which is a lightweight
visualization of software entities enriched with software met-
rics. It allows the quick viewing of multiple software metrics
values in a single entity. For instance, the measures of a dis-
played rectangle could be defined in terms of the LOC and
number of methods in a class.

In this paper, we propose a 2D polymetric view for the
visualization of code annotations characteristics. The goal is
to provide an intuitive way to visually extract information
about annotations and metadata configuration in software
projects. Packages and classes are represented as rectangles,
while annotations as circles. Values such as area, radius, color,
and position are defined by metrics values. We developed a
prototype tool named Annotation Visualizer (AVisualizer),
using the Unity Game Engine to implement our visualization
design. To demonstrated it, we created a small sample project
with seven classes and annotations from different frameworks.

This paper is organized as follows. Section 2 presents the
concepts of metadata in the context of object-oriented pro-
gramming and how annotations are used. Section 3 presents
the related work. Section 4 describes the suite of software
metrics dedicated to code annotations. Section 5 describes
our proposal for code annotations metrics visualization and
how the tool was developed. Section 6 concludes the paper
and presents future works.

2 METADATA AND CODE ANNOTATIONS

The term “metadata” is used in a variety of contexts in the
computer science field. In all of them, it means data referring
to the data itself. When discussing databases, the data are
the ones persisted, and the metadata is their description, i.e.,
the structure of the table. In the object-oriented context, the
data are the instances, and the metadata is their description,
i.e., information that describes the class. As such, fields,
methods, super-classes, and interfaces are all metadata of
a class instance. A class field, in turn, has its type, access
modifiers, and name as its metadata [9].

The class structure might not be enough to allow a specific
behavior or routine to be executed, and therefore additional
metadata can be configured on the programming elements.
Afterward, a framework or tool consumes them and executes
the desired behavior. For instance, metadata can be used
to generate source code [10], compile-time verification [11],
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framework adaptation [12], perform object-relational map-
ping, object-XML mapping and so forth.

Custom metadata can be configured using external storage,
such as a database or an XML file [13]. This approach adds
verbosity to the system since it is necessary to inform a com-
plete path between the referenced element and its metadata.
Another alternative is to define code conventions [14], used
by the Ruby on Rails [15] and the CakePHP framework!.
Developing with this method can be productive; however, it is
limited when it comes to configuring more complex metadata.
For this reason, some programming languages provide fea-
tures that allow custom metadata to be defined and included
directly on programming elements. This feature is supported
in languages such as Java, through the use of annotations [16],
and in C#, by attributes [17]. A benefit is t hat t he meta-
data definition is closer to the programming element, and its
definition is less verbose t han external approaches. Also, the
metadata is being explicitly defined in the source code as op-
posed to code convention approaches. Some authors call the
usage of code annotations as attribute-oriented programming
since it is used to mark software elements [18, 19].

Annotations are a feature of the Java language, which
became official on ve rsion 1. 5, sp reading, ev en mo re, the
use of this technique in the development community. Some
base APIs, starting in Java EE 5, like EJB 3.0 and JPA, use
metadata in the form of annotations extensively. This native
support to annotations encourages many Java frameworks
and API developers to adopt the metadata-based approach
in their solutions. They were also a response to the tendency
of keeping the metadata files inside t he s ource c ode itself,
instead of using separate files [20].

1 Q@Entity

2  @Table(name="Players")

3 @Component //Used by Spring Framework

4  public class Player {

5

6 Q@Id

7 @GeneratedValue(strategy = GenerationType.IDENTITY)
8 private int id;

9 @Column(name = "health")
10 private float health;
11
12 @Column(name = "name")
13 private String name;
14
15 @Column(name = "birthdate", nullable = false)
16 private Date birthDate;
17 //getters and setters omitted
18 )

Figure 1: Example Java Class with Annotations

Consider the code on Figure 1. It is a simple Java class
representing a player from a video game code. To map this
class to a table in a database, to store the player’s infor-
mation, we need to pass in some “extra information” about
these code elements. In other words, we need to define an
object-relational mapping, and we need to configure which
elements should be mapped to a column, table, and so forth.

1cakephporg
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Using code annotations provided by the JPA API, this map-
ping is easily achieved. When this code gets executed, the
framework consuming the annotations knows how to perform
the expected behavior, which occurs as described below:

e The class Player is mapped as an Entity and to a table
named Player

e The private member id is mapped into a primary key
on the table.

e The members health, name, and birthDate are all
mapped to columns.

e The @Component makes the Player class a bean man-
aged by the Spring Framework. It is not related to the
object-relational mapping.

Another important definition is that of an annotation
schema, defined as a set of associated annotations that be-
long to the same API. The annotations used in the example
code are part of the JPA schema, with the exception of
@Component, which belongs to the Spring framework. An
annotation-based API usually uses a group of related anno-
tations that represent the set of metadata necessary for its
usage [1].

3 RELATED WORK

Wettel and Lanza [21] proposed a 3D visualization based
on the city metaphor, i.e., an object-oriented software is
represented as a city that can be visited and interacted with.
The authors opted for this metaphor since it is by far the most
adopted one and provides a suitable means to transmit a good
sense of habitability and locality. Areas such as downtown
and suburb are a familiar concept to potential users of this
tool.

To demonstrate and exemplify their visualization design,
they developed a tool named CodeClity that allows the user
to interact and visit “cities” that represent software. Classes
are rendered as buildings and packages as districts. The
authors used three large software systems, such as ArgoUML,
Azureus, and VisualWorks Smalltalk, to assess their proposal.
The tool was able to scale to accommodate these software
projects and allowed interaction features such as selection,
filtering, and visual tagging of the displayed elements.

The city metaphor also gained a Virtual Reality (VR)
version [8], and a new tool Code2City was developed to
support VR. The authors conducted experiments comparing
three different approaches to software visualization. They
use of Code2City (i), and the VR version (ii) displayed on
a regular computer screen. They also used a plugin for the
Eclipse IDE named Metrics and Smells that collects metrics
and detect bad smells (iii). As other research results, the
authors presented that the city metaphor increases software
comprehension, and users using the VR version concluded
the experiment tasks more quickly and were more satisfied.

The Forest Metaphor [22] depicts software as a forest of
trees. Each tree is rendered as a class. Trunks, branches,
leaves, and their color indicate characteristics of classes (for
instance, a method is a branch of the tree that, in turn,
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represents a class). They created a prototype tool named
CodeTree to implement this metaphor.

Francese et al. [7] proposed a polymetric visualization ap-
proach to object-oriented software. The authors implemented
a prototype tool, executing as an Eclipse Rich Client Plat-
form (RCP) application. The tool was named MetricAttitude.
It provides a large-scale understanding of a software system,
visualizing all classes together, and handles class relation-
ships.

The work of [23] proposes a SOM (Self-Organizing Map)
to classify Java classes of open source projects based on code
annotations usage. Annotation metrics [1] values were used
to generate the map. The authors were able to identify three
different groups of classes based on code annotations.

The work that we are proposing in this paper is not based
on any metaphor, but rather a simple 2D polymetric view. We
are investigating how to visualize code annotations metrics
values from Java projects. To the best of our knowledge, no
prior work investigates visualizing such information.

4 ANNOTATION METRICS

This section describes the suite of annotation metrics pro-
posed by [1]. Our proposed polymetric view uses these metrics
values as input to generate our visualization. The Java source
code in Figure 2 is used to clarify the usage of the metrics
further.

1 import javax.persistence.AssociationOverrides;
2 import javax.persistence.AssociationOverride;
3 import javax.persistence.JoinColumn;
4 import javax.persistence.NamedQuery;
5 import javax.persistence.DiscriminatorColumn;
6 import javax.ejb.Stateless;
7 import javax.ejb.TransactionAttribute;
8
9 @AssociationOverrides(value = {
10 @AssociationOverride(name="ex",
11 joinColumns = @JoinColumn(name="EX_ID")),
12 @AssociationOverride (name="other",
13 joinColumns = @JoinColumn(name="0_ID"))})
14 QNamedQuery (name="findByName",
15 query="SELECT c " +
16 "FROM Country c " +
17 "WHERE c.name = :name")
18 @Stateless
19  public class Example {...
20
21 @TransactionAttribute (SUPPORTS)
22 @DiscriminatorColumn(name = "type", discriminatorType = STRING)
23 public String exampleMethodA(){...}
24
25 @TransactionAttribute (SUPPORTS)
26 public String exampleMethodB(){...}
27
28 @TransactionAttribute (SUPPORTS)
29 public String exampleMethodC(){...}
30 }

Figure 2: Code for candidate metrics examples.

Annotations in Class (AC). This metric counts the number of
annotations declared on all code elements in a class, including
nested annotations. In our example code, the value of AC is
equal to 11.
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Unique Annotations in Class (UAC). While AC counts all
annotations, even repeated ones, UAC counts only distinct
annotations. Two annotations are equal if they have the same
name, and all arguments match. For instance, the annotation
@AssociationOverride on line 10 is different from the one
on line 12, for they have a nested annotation @JoinColumn
that have different arguments. The first is EX_ID while the
latter is 0_ID. Hence they are distinct annotations and will
be computed separately. The UAC value for the example
class is nine. Notice that the annotations on lines 21, 25, and
28 are calculated only once for they are equal.

Annotations Schemas in Class (ASC). An annotation schema
represents a set of related annotations provided by a frame-
work or tool. This measures how coupled a class is to a
framework since different schemas on a class imply the class
is using different frameworks. This value is obtained by track-
ing the imports used for the annotations. On the example
code, the ASC value is two. The import javax.persistence
is a schema provided by the JPA, and the import javax.ejb
is provided by EJB.

Arguments in Annotations (AA). Annotations may contain
arguments. They can be a string, integer, or even another
annotation. The AA metric counts the number of arguments
contained in the annotation. For each annotation in the class,
an AA value will be generated. For example, on line nine the
@AssociationOverrides has only one argument “value”, so
the AA value is equal one. But @AssociationOverride, on
line 10, contains two arguments, name and joinColumns, so
the AA value is two.

Annotations in Element Declaration (AED). The AED metric
counts how many annotations are declared in each code ele-
ment, including nested annotations. In the example code, line
23, the method exampleMethodA has an AED value of two, it
has the @TransactionAttribute and @DiscriminatorColumn

Annotation Nesting Level (ANL). Annotations can have other
annotations as arguments, which translates into nested an-
notations. ANL measures how deep an annotation is nested.
The root level is considered value zero. The annotations
@Stateless on line 18 has ANL value of zero, while
@JoinColumn on line 11 has ANL equals two. This data is
because it has @AssociationOverride, line 10, as a first
level, and then the @AssociationOverrides, line nine, adds
another nesting level, hence the value ANL is two.

LOC in Annotation Declaration (LOCAD). LOC (Line of
Code), is a well-known metric that counts the number of
code lines. The LOCAD is proposed as a variant of LOC that
counts the number of lines used in an annotation declaration.
@AssociationOverrides on line nine has a LOCAD value of
five, while @NamedQuery, line 14, has LOCAD equals four.

Number of Elements (NEC). This metric measures the num-
ber of elements that can be annotated in a class, i.e., the
number of programming elements that can potentially be
configured with code annotations. In the example class we
have three methods, exampleMethodA, exampleMethodB and
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exampleMethodC, and the class declaration Example. Hence
we have an NEC value of four.

5 VISUALIZING CODE ANNOTATIONS

Being able to visualize software can aid in detecting bad
smells, improve code readability, comprehension, monitor
code complexity, and identify misuse [7, 8]. Specifically for
code annotations, developers are usually using more than
one metadata-based framework, i.e., dealing with multiple
annotations schemas. As such, poorly designed Java classes
might be overloaded with annotations from several different
schemas, bringing impact to the readability, evolution, and
maintenance of such classes. Furthermore, there are indi-
cations of classes with a high number of annotations (AC
metric), a high number of schemas (ASC metric), and anno-
tations with several lines used in their declaration (LOCAD
value). These findings suggest t he existence of outliers and
bad smells related to code annotations [1].

We argue that being able to visualize code annotation
metrics values might aid developers in identifying poten-
tial misuse, outliers, and metadata-configuration issues in
their code. To overcome this, we present in this section our
proposed visualization.

5.1 The Visualization Design

Our proposed design uses five source code metrics values -
LOC, NEC, ASC, AA, and AED - to generate the visual-
ization of the packages, classes, and annotations. The latter
is represented as a circle, while the other two are rectan-
gles. The circles (annotations) will be rendered inside the
rectangles (classes), overlapping them, since it is 2D. The
class-rectangles will overlap the package-rectangle. This ap-
proach also reinforces that annotations are written inside the
class, and we want to emphasize that on our visualization.
The measurement unit being used is centimeter (cm). To
exemplify our visualization, we will use the class in Figure 1.

The width (horizontal) of the rectangle is the class NEC
value. The example class in Figure 1 has an NEC value of
five, so t he rectangle will have a width of fi ve centimeters.
The height (vertical) is obtained dividing the class LOC
value by a normalization factor called CHN (Class Height
Normalization). Equation 1 shows how the CHN factor is
calculated for the project. The MAX AED is the highest
AED value, considering the whole project, while MAX_LOC
is the LOC value of the class that contains this element. In
case of a tie for the number of annotations, i.e., the AED
value, we will use the lowest LOC value. Using this technique,
we guarantee that classes with high AED values will still
have their annotations rendered correctly. In other words,
the circles will be drawn with adequate proportions.

MAX LOC

CHN = MAX_ AED

(1)

Consider that the class in Figure 1 belongs to a project
where it has the highest number of annotations configuring a
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single element, i.e., the AED metric value is the highest. The
class declaration, Player, has three annotations - @Entity,
@Table and @Component - so MAX AED is three. The LOC
value for the class is 18 (for this demonstration, consider the
total absolute number of lines). Hence CHN is equal to 18/3
= 6. For this project, every rectangle height will be the LOC
value of the class being rendered divided by six, which is the
CHN factor for the current project. For the example class,
the height of the rectangle will be 18 (LOC) / 6 (CHN) = 3
(cm).

As mentioned, the annotations are rendered as circles
overlapping the rectangles (classes). The diameter of these
circles depends on the AA value of the annotation, and the
MAX__AA value of the project normalizes it. In other words,
the width of the circle depends on the number of arguments
declared inside the annotation (AA), and can be calculated
as shown in Equation 2.

AA_VALUE +1

MAX a1 *0Y

)

Diameter (cm) =

Annotations with an AA value equal to the MAX__AA
value will be rendered with a diameter of 0.9 cm, which rep-
resents the largest possible circle. We multiply the diameter
value by 0.9 to leave some space between circles (padding
value). As the AA value decreases, so will the diameter,
rendering smaller circles. Developers using our proposed vi-
sualization will be able to quickly differentiate annotations
with different AA values, simply looking at the circles. In the
example class on Figure 1 the MAX AA value is two, given
that the annotation @Column on line 15 has two arguments.
This annotation will be rendered as a circle with a diameter
of 0.9 cm, as well as every other annotation with an AA value
of two. Annotations with smaller values of AA will have the
diameter decreased following the Equation 2.

Another characteristic of the circles is their color, which
varies according to the schema they belong to. For this proto-
type, we are adopting the color red for JPA annotations and
blue for Spring annotations. The example class in Figure 1
contains only one Spring annotation, so it will be rendered
blue, and all other circles will be red. Using this method,
developers can quickly visualize different annotation schemas
in the class.

The circles are rendered in a grid fashion. The width of the
rectangle determines the number of columns (NEC value),
and the height determines the number of rows (LOC value
normalized by CHN). All annotations configuring the same
code element will be drawn in the same column. Figure 3
presents the visualization for the class on Figure 1. The largest
circle has an AA value of two since the others are smaller;
we can easily assure that they represent annotations with
less than two arguments. Where the AED value indicates the
number two, means this column represents a code element
with two annotations configured.

To give a broader view of our visualization approach, Fig-
ure 4 presents a simple fictional Java project being drawn.
It has two packages, each with three classes. Packages are
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Figure 3: Example of the Proposed Visualization for a Single
Class

drawn as rectangles with the names on top, left-aligned. On
our initial proposal, each package renders a maximum of
three classes horizontally, with a subsequent trio of classes
being drawn on new lines. The package-rectangle height and
width are calculated based on the class with the highest
LOC and NEC values. This approach guarantees that the
classes-rectangles will be rendered smoothly. Each class is
represented as a rectangle overlapping the package-rectangle,
with its name on top, left-aligned. This approach is intuitive
since Java projects have the same behavior, i.e., classes reside
inside packages.

Observing Figure 4, we can quickly see that in package
pkgl Classl has the highest NEC and LOC value, it has
annotations from two different schemas, one code element
has three annotations, and so forth. Meanwhile, Class6 has
only two annotations; by the size, we can conclude that they
have no arguments since as the number of arguments increase,
so does the diameter of the circles. Both these annotations
belong to the Spring schema (blue color). Analyzing package
pkg2, we see that Class3 has the highest AC value and that
the majority of the annotations are concentrated on a single
code element. On the other hand, Class4 has the lowest AC
value in the package, and the annotations have low AA values,
i.e., a small number of arguments. Empty columns represent
elements with no annotations configuring them.

5.2 Annotation Visualizer

The Annotation Visualizer (AVisualizer) is an open-source
tool 2 developed using the Unity Game Engine3. Game En-
gines are frameworks dedicated to game development. They
control the execution of the application by implementing the
game loop and are also equipped with libraries extensively
used by game developers such as physics, artificial intelli-
gence, visual effects, user interface, graphics programming,

2gi‘clab.com/phillima/vcrn720197p1roto
unity.com
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and so forth. Unity is programmed using the C# language
and is one of the most popular game engines, used across
the globe [24]. Recently, researches and developers are also
using Unity for non-game purposes, such as simulation of
systems using UAV (unmanned aerial vehicle) for security
[25] and simulation of future cities [26]. We chose the Unity
Game Engine for this prototype version of the tool to also
investigate if using a Game Engine suits the needs for 2D
data visualization tools.

The AVisualizer requires, as input, the XML file provided
by the ASniffer [27]. This XML file contains all annotation
metrics values as well as the LOC value. The tool begins
performing an XML-object parsing to an instance of the
class ProjectContainer, which will hold all the information
about the project, such as packages, classes, and annota-
tions that will be drawn. After the parsing is completed, the
SpawnManager class reads all data in the ProjectContainer
and initiates the spawning process. Rectangles and circles will
be rendered following the design presented in the previous
section.

To demonstrate the prototype tool, we created a small
example project. It contains seven classes and two annotation
schemas, JPA and Spring. We collected the needed metrics
values, and the AVisualizer used these values to generate the
visualization presented in Figure 5. This figure is a screenshot
taken directly from Unity, i.e., the prototype tool is running
from inside Unity Game Engine.

In this figure, we see two packages drawn as white rectan-
gles, seven classes, drawn as green rectangles, and annotations
drawn as circles. If there were more packages, they would
be drawn below, so the user has to scroll down or zoom out
to analyze more packages. We quickly see that Class1 and
Class3 has higher values for LOC and NEC. Class3 also
has a concentration of annotations on a single code element.
Some of these annotations have a high number of arguments
(this is seen by the diameter of the circles).

Observing Class6 and Class4, they are small classes with
only two annotations from the Spring framework (blue color).
A developer analyzing this visualization, could potentially
identify that these two classes should belong in the same
package, for code organization purposes. Or, if there was
a red circle (meaning a JPA annotation) in Class4, the
developer could further analyze the source code to reassure
that the configuration is indeed adequate.

The visualization shows that Class7 and Class2 are simi-
lar in terms of LOC, NEC and metadata-configuration. Fur-
ther inspecting the code, the developer can potentially con-
clude that these classes could be merged, or they could share
the same abstraction and refactor towards an adequate design
pattern in the project.

6 CONCLUSION

In this paper, we proposed an approach to visualization
design, in terms of a polymetric view for code annotation
metrics, and implemented it through the AVisualizer, an
open-source tool developed using the Unity Game Engine.
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Figure 5: Output example of the Annotation Visualizer for a sample project with seven classes

The tool reads code annotation metrics values and renders
classes and packages as rectangles and annotations as cir-
cles. The measures of the rectangle are based on the number
of elements and the LOC value of the class, while the cir-
cles vary color, radius, and position according to annotation
metrics values. We demonstrated the visualization running
the tool on a small sample project, where it was possible to
quickly visualize specific annotations characteristics, such as
arguments, schemas, and the code elements it configures.
Regarding the Unity Game Engine, it was not trivial to use
it as a development environment for a static 2D visualization

282

tool. Much of the Unity’s available functionality are suited for
Game Development, i.e, software based on the Game Loop
Pattern [28]. Furthermore we realized that using Unity to
develop our tool made using the AVisualizer consume much
more resources (memory and cpu) than a usual software
engineering tool should. This could be a major draw back to
have potential researches and developers adopting our tool to
monitor their source code. The tool should be lightweight and
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have minimal requirements to run. As such, we will proceed
the development of the AVisualizer using the D3%.

This work is ongoing research, and we intend to cover
more annotations metrics from the suite, as well as improve
the tool. For instance, we have the metric ANL (Annotation
Nesting Level), that measures how deep an annotation is
nested inside another one. In our visualization design, we
could represent this as the transparency of the circle, where
the deeper an annotation is nested, the more transparent
it becomes. Another metric to cover is the LOCAD (LOC
in Annotation Declaration), and could be visualized as the
color intensity, where the lighter the color, the more lines of
code was used to declare the annotations. Consider a JPA
annotation that is opaque and dark red. This would translate
in ANL of zero and LOCAD of zero as well. Being able to
quickly visualize all of these metrics values might aid devel-
opers to quickly detect problems related to code annotations,
that could otherwise be harder to find by i nspecting the
source code. We also have other aspects to explore, such as:

Scalability. The tool will need to operate on very large soft-
ware systems and provide visualization for them. The design
will be improved to accommodate such systems. One prelim-
inary option is to create three layers of visualization, with
different granularity. For instance, a system, p ackage, and
class layer. The current version is implementing a package
layer.

User Interaction. Users of AVisualizer will need to interact
with shown elements to obtain more data from them. The
tool also needs to offer m echanisms s o users c an navigate
the visualization, interact with different layers, and highlight
specific characteristics. For instance, t he user might want to
highlight a particular annotation and be able to see every
other class with that same annotation quickly.

Tool Execution. Currently, to run the AVisualizer, the user
requires the Unity Game Engine installed since we are still
prototyping the tool. As it evolves, we will create executable
standalone versions for Desktop and Web, using the Unity
Game Engine, since it supports more than 20 platforms.

Evaluation. We intend to execute controlled experiments with
professional software developers and also students. We will
prepare questionnaires and tasks to verify the effectiveness
of the tool. For instance, we will have two different groups
performing the experiments, with one group using the AVi-
sualizer and the other one merely inspecting the source code.
We want to find out if the tool is indeed able to improve code
readability, comprehension, and task completion, regarding
code annotations. We will also execute the tool on real-world
projects to help validate the tool.
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