
On-board Compressing of
Hyperspectral Images using CCSDS 123

ABSTRACT
A satellite performing hyperspectral image processing requires

high storage capacity and larger communication bandwidth. Com-

pression algorithms, like the CCSDS 123, have been proposed to

mitigate these requirements. Considering the constraints associ-

ated to satellites, single-purpose processors have been developed

to run these algorithms in Systems-on-Chip (SoC). In this work, we

evaluate alternatives to integrate a CCSDS 123 compressor with

an embedded processor based on RISC-V and ARM-based architec-

tures.
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1 INTRODUCTION
Hyperspectral images are large data arrays that describe the elec-

tromagnetic spectrum. They can be applied in several areas, such as

medicine, biogeochemistry, biophysics, and industrial monitoring

[1]. These images usually include hundreds of bands, producing a

huge amount of data.

The compression of hyperspectral images can be a helpful feature

in remote sensing systems [2]. For this purpose, the Consultative

Committee for Space Data Systems (CCSDS) [3] has proposed a

recommendation for lossless compression of hyperspectral images,

called CCSDS 123. This recommendation benefits from the charac-

teristics of the hyperspectral images to increase the compression

rate. The recommendation defines a throughput of 20 MSa/s (Sam-

ples per Second) as the minimum rate to achieve real-time. There-

fore, some works have developed hardware accelerators to reduce

power consumption and to increase communication throughput.

The authors in [4] developed an accelerator for the prediction

stage of the CCSDS algorithm, which is the most costly one. The

implementation focused on the low use of logical elements in an

FPGA (Field Programmable Gate Array) device.

Since the space environment is susceptible to faults due to ioniz-

ing particles, which can cause failures in the system, fault tolerance

techniques are required to protect these systems. According to [5],

Single Event Transient (SET) and Single Event Upset (SEU) are

effects with a high occurrence probability in integrated circuits

applied in this type of environment. A SET fault happens when

ionizing particles hit the device, and it experiences a transient pulse

interference in its wires and logic. The SEU fault takes effect when

the logical value of a memory element suffers an inversion as a

result of the impinging particle.

In this context, the paper presents a comparative study between

two types of integrations of a hardware-accelerated predictor sys-

tem, which on one side implements a hard-core processor (ARM-

based), and the other a soft-core (RISC-V-based) processor. This

study aims at evaluating the architectural parameters and resources

that are employed in the two implementations to identify their crit-

icalities. For example, essential parameters include critical paths,

which interests the occurrence of delay faults and SETs, and the

amount of used sequential logic that is particularly prone to SEUs.

This analysis supports further integration of the co-processor in a

reliable version of the RISC-V, which is under development by our

research team.

2 BACKGROUND
This section presents the background regarding this work, by intro-

ducing concepts on hyperspectral images, the CCSDS 123 standard,

and the computer system architectures used for the evaluation.

2.1 Hyperspectral Images
Hyperspectral images have ample spectral information with several

wavelengths that allows the identification and distinguishing of

spectrally similar materials [6]. Fig. 1 presents a visual representa-

tion of a hyperspectral image.

Figure 1: Hyperspectral Image Representation [7]
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Hyperspectral images are extensively used in remote sensing,

due to its potential for more accurate and detailed information

extraction when compared to other types of remotely sensed data

[6]. According to [8], hyperspectral imagery combines two sensing

modalities: imaging, related to the spatial distribution, and spec-

trometry, which measures the power variation with the wavelength

or frequency of light.

An example of the hyperspectral image is scene 0 from the un-

calibrated image YellowStone of the [9] database. Fig. 2 presents a

visual representation in the RGB spectrum of this scene.

Figure 2: RGB Yellowstone Scene 0 [9]

2.2 CCSDS 123
CCSDS 123 is a lossless compression algorithm recommendation

defined by the CCSDS committee. This algorithm was explicitly

created for hyperspectral images, taking advantage of its charac-

teristics [10]. It consists of two stages: prediction and encoding,

presented in Fig. 3. The input of the algorithm is a three-dimensional

image, and the resulting compressed image is an encoded bitstream,

which can reconstruct the input image.

CCSDS RECOMMENDED STANDARD FOR LOSSLESS MULTISPECTRAL & 
HYPERSPECTRAL IMAGE COMPRESSION 

CCSDS 123.0-B-1 Page 2-1 May 2012 

2 OVERVIEW 

2.1 GENERAL 

This Recommended Standard defines a payload lossless data compressor that has 
applicability to multispectral and hyperspectral imagers and sounders.  This Recommended 
Standard does not attempt to explain the theory underlying the compression algorithm;  that 
theory is partially addressed in reference [C1]. 

The input to the compressor is an image, which is a three-dimensional array of integer 
sample values, as specified in section 3.  The compressed image output from the compressor 
is an encoded bitstream from which the input image can be recovered exactly.  Because of 
variations in image content, the length of compressed images will vary from image to image.  
That is, the compressed image is variable-length. 

A user may choose to partition the output of an imaging instrument into smaller images that 
are separately compressed, e.g., to limit the impact of data loss or corruption on the 
communications channel, or to limit the maximum possible size of a compressed image. This 
Recommended Standard does not address such partitioning or the tradeoffs associated with 
selecting the size of images produced under such partitioning.  Reference [C1] presents some 
examples. 

The compressor consists of two functional parts, depicted in figure 2-1: a predictor and an 
encoder. 
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Figure 2-1:  Compressor Schematic 

The predictor, specified in section 4, uses an adaptive linear prediction method to predict the 
value of each image sample based on the values of nearby samples in a small three-
dimensional neighborhood.  Prediction is performed sequentially in a single pass.  The 
prediction residual, i.e., the difference between the predicted and actual sample values, is 
then mapped to an unsigned integer that can be represented using the same number of bits as 
the input data sample.  These mapped prediction residuals make up the predictor output. 

The compressed image, specified in section 5, consists of a header that encodes image and 
compression parameters followed by a body, produced by an entropy coder which losslessly 
encodes the mapped prediction residuals. Entropy coder parameters are adaptively adjusted 
during this process to adapt to changes in the statistics of the mapped prediction residuals. 

Figure 3: CCSDS overview [10]

The prediction stage is an adaptive linear prediction method

based on the values of the neighbor samples from the current and

previous bands. The prediction has six steps, which are: local sum,

local difference, inner product, predictor, mapped, and weight up-

date.

In this work, we are using the column-oriented local sum, which

results is four times the sample of the previous line when y > 0

and four times the sample of the previous column when y = 0 and

x > 0. The local difference adopted is the central-local difference,

which value is four times the current sample minus the equivalent

local sum.

The inner product steps are the calculation of the inner prod-

uct between the local differences of the three previous bands and

the three weights of the current band. After this step, the scaled

predicted sample is calculated based on the inner product, local

sum, and the current sample. The mapped prediction residual is

the result of the prediction stage and relates itself to the difference

between the scaled predicted sample and the sample value.

The second stage is responsible for creating the output of the

compressor. Initially, it outputs the meta-data of the compressed

image, which contains relevant information for its decompression.

After, the algorithm processes each mapped result from the pre-

dictor. The process consists of an entropy encoder that losslessly

encodes the predictor output and sends it to the compressor output.

2.3 System Architectures
We have been elaborating on two different approaches — the first

implementation hard-core ARM-based. The ARM (Advanced RISC

Machine) architecture is one of the most licensed processor cores

in the world. The ARMv8 architecture uses micro-architecture tech-

niques to provide small and efficient implementations [11].

Because of the reduced instruction set, the ARM architecture

requires fewer transistor than CISC (Complex Instruction Set Com-

puter) processors, enabling smaller die size of integrated circuits.

This architecture has three profiles: application profile, real-time

profile, andmicrocontroller. Many consumer electronics adopt ARM

processors, such as smartphones, tablets, multimedia players, and

wearables.

The second approach used in this work uses a soft-core RISC-V

system. RISC-V is an open instruction set architecture (ISA) sup-

ported by the RISC-V foundation [12]. It has as the main principle

to be adequate to any computational device, being adaptable to

a wide range of applications, from high-performance devices to

simple microcontrollers.

The RISC-V architecture has been designed to simplify the hard-

ware implementation, using a very regular instruction encoding,

and a direct memory model with no complex instructions for mem-

ory access. One of the benefits of the RISC-V is that minimal cores

are much smaller than similar ones as, for instance, ARM and x86,

although the difference is not meaningful in higher performance

cores [13]. Fig. 4 presents an overview of a simple single-cycle

RISC-V architecture, which is very similar to the MIPS.

PULPino [14] is a single-core System-on-Chip (SoC) based on

RISC-V architecture that can use RI5CY or zero-riscy cores. Fig. 5

shows a block diagram of the SoC with an AMBA (Advanced Micro-

controller Bus Architecture) AXI (Advanced eXtensible Interface)

as its main bus and a bridge to APB (Advanced Peripheral Bus) for

peripherals. Both buses feature 32-bit wide data channels.

The RI5CY [15], used by PULPino, is a 32-bit RISC-V core with

a 4-stage pipeline, implemented with the focus on ISA and micro-

architecture optimization, specifically targeting parallel applica-

tions.
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FIGURE 4.21  The datapath in operation for a
branch-if-equal instruction.

The control lines, datapath units, and connections that
are active are highlighted. After using the register file
and ALU to perform the compare, the Zero output is

used to select the next program counter from between
the two candidates.

Finalizing Control
Now that we have seen how the instructions operate in steps, let’s
continue with the control implementation. The control function can
be precisely defined using the contents of Figure 4.18. The outputs
are the control lines, and the inputs are the opcode bits. Thus, we
can create a truth table for each of the outputs based on the binary
encoding of the opcodes.

Figure 4.22 defines the logic in the control unit as one large truth
table that combines all the outputs and that uses the opcode bits as
inputs. It completely specifies the control function, and we can
implement it directly in gates in an automated fashion. We show

515

Figure 4: RISC-V overview [12]
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Figure 5: PULPino overview [14].

3 PROPOSED ARCHITECTURES
Among the stages of the compression process, the prediction is

the most costly one as a result of the intensive use of arithmetic

operations. A prior work [4] implemented an accelerator for this

stage on FPGA, focusing on low usage of logical resources and

achieving the minimum requirement for real-time processing.

The authors applied the column-oriented local sum approach and

the reduced prediction mode, which achieves better performance

with raw images in comparison with the use of calibrated images.

To allow sharing the weights among various instances of the core,

they implemented the weights memory outside the core.

The samples are processed in the BIP (Band Interleaved by Pixel)

format, reducing the amount of required memory. The compressor

implementation (Fig. 6) predicts one sample every seven cycles with

a maximum operating frequency of 142.85 MHz.

The implementation of the core has enabled real-time processing

with a low cost in hardware. According to [4], their processor

achieved a maximum of 20.4 MSa/s, requiring 561 FPGA slices.

Thus, allowing the designer to obtain a good trade-off between

efficiency and logical resources.

In this work, we are performing the integration of the predic-

tor core to the SoC architectures through an AMBA bus. The

Fig 7 presents a visual representation of the wrapper. Since the

co-processor is running at a higher frequency than the main pro-

cessor, we had to implement the block Predictor enable, which

has the purpose of keeping the enable flag available during only

one predictor clock cycle. Using this scheme, we ensure that the

co-processor processes the sample only once.

The samples data required by the processor come from the main

processor, which is stored by the Input Register. After the predictor

finishes its tasks, it writes the mapped result to the Output Reg-

ister and activates a ready flag. The general-purpose processor is

responsible for the retrieval and forwarding of the samples from

the data memory to the co-processor.

The image compression flow that runs in the main processor is

presented in Algorithm 1. The first for loop initializes the counter

and accumulator, required by the encoding stage. The second for
loop runs three steps to get the sample for the compression: (i) set
sample, which gets the current sample data retrieved from the data

memory; (ii) set neighbour, which receives the neighbour specified

by the CCSDS recommendation; and (iii) set start flag, which sends

the start flag to the co-processor. After these steps, it waits until

the co-processor finishes the execution of the prediction, encoding

the mapped result.

Algorithm 1 CCSDS 123 Compression.

1: procedure Main

2: for each band do
3: initializecounter [band]
4: initializeaccumulator [band]
5: end for
6: for each sample do
7: set sample
8: set neiдhbour
9: set start f laд
10: unset start f laд
11: while not ready do
12: wait
13: end while
14: encode_mapped(sample, counter ,accumulator )
15: end for
16: end procedure

Our work has integrated the predictor co-processor with two

different architectures: a hard-core ARM and a soft-core RISC-V. In

Sections 3.1 and 3.2, we describe these implementations.

ARM integration
We used the hard-core ARM available in the FPGA device. This inte-

gration was made using only Xilinx proprietary IPs. The predictor

is connected using the previously described wrapper to connect

to an AMBA AXI bus, using the AXI interconnect Xilinx IP. The

ARM processor and the bus are running at 660 MHz and 100 MHz,

respectively.
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Figure 6: Compressor block diagram [4].
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Figure 7: Predictor Co-processor Wrapper.

RISC-V integration
The integration with RISC-V was made using a soft-core version.

We chose PULPino [14] as it is widely adopted and has an implemen-

tation of the AMBA bus. The predictor co-processor is connected

to the peripheral bus (AMBA APB).

The PULPino core runs with a 5 MHz clock by default, as well

as the AMBA buses. This architecture is implemented entirely on

the FPGA logical resources, using discrete parts only to essential

connections, like clock generators and GPIO (General-Purpose In-

put/Output).

4 VERIFICATION AND RESULTS
Our implementations were validated using the Zynq-7000 SoC from

the Zedboard development kit. The image used is the Yellowstone

uncalibrated Scene 0, from the AVIRIS database [9], presented in

2.1. The compressed image with both integrations was the same

compared to the one from the Empordá software [19].

Table 1 presents a comparison between the new implementation

described in this paper and related work. When comparing the

previous implementation [4] to our proposal, we noticed that the

maximum operating frequency is slightly different, this is due to

the Vivado synthesis tool estimation, as the metrics authors from

previous work obtained the frequency through FPGA prototyping.

The logical resource usage differs in each integration. While

the ARM one uses 2,387 LUTs, 1,091 FFs, and 3 DSPs, the RISC-V

integration uses 18,890 LUTs, 12,392 FFs, and 9 DSPs. The higher

quantity of logical resources used by the second one is the conse-

quence of using a soft-core processor instead of a hard-core one.

The Programmable Logic (PL) was used instead of the Processing

System (PS).

Using the Vivado software power analysis, we obtained a dy-

namic power of 0.607 W and 0.245 W when employing the ARM

and the RISC-V implementations, respectively. RISC-V has lower

power figures than ARM as the entire SoC with RISC-V runs at a

much lower clock frequency.

Regarding the performance in each integration, the tool esti-

mated that when using the PULPino SoC, the maximum frequency

(Fmax ) of the predictor co-processor is 55.94 MHz. At the same

time, with the ARM, we obtained 61.56 MHz. The difference is due

to the type of implementation in which the logical elements and

connections are placed in a more optimized way when there are

more available resources (ARM), thus directly influencing critical

paths of the circuit. A longer critical path is not only a performance

issue, but it makes the system more prone to delay faults and SETs.

As there is no optimization in the communication between the

processor and the co-processor, these systems cannot reach the real-

time requirement, presenting a lower throughput when compared

to related works.

XI Computer on the Beach
2 a 4 de Setembro de 2020, Baln. Camboriú, SC, Brasil Santos et al.

335



XI Computer on the Beach
2 a 4 de Setembro de 2020, Baln. Camboriú, SC, Brasil Santos et al.

Table 1: Comparison with related works

Work FPGA Slices LUTs FFs DSPs

Throughput

(MSa/s)

Fmax
(MHz)

Mode Predictor Encoder

[2] Virtex-5 FX130 834 n.a. n.a. n.a. 55.4 55.4 Full HW n.i.
[16] Virtex-5 VFX130 842 2,342 1,535 1 11.3 43.4 Full HW HW

[17] Virtex-7 XC7 24,238* 96,955 n.a. 25 219.4 n.a. Full HW HW

[18] Zynq-7000 3,008* 12,033 10,696 28 750 157 Full HW HW

[4] Zynq-7000 561* 2,244 630 3 20.4 142.85 Reduced HW n.i.
ARM-based Zynq-7000 597* 2,387 1,091 3 1.43 61.56 Reduced HW SW

RISC-V-based Zynq-7000 4,722* 18,890 12,392 9 0.088 55.94 Reduced HW SW

Notes: n.i.: not implemented; n.a.: information not available; *estimated values (1 slice = 4 LUTs)

5 CONCLUSIONS
In this work, we integrated and evaluated a predictor co-processor

by using two different implementations, withARM-based SoC (hard-

core) and RISC-V (soft-core) architectures. The maximum operating

frequency when integrated with RISC-V is lower because the pre-

dictor shares the programmable logic part with the RISC-V, causing

an increase of the critical paths, which affects the susceptibility

to SET faults and delay faults. Also, the soft-core RISC-V imple-

mentation requires more sequential logic, such as registers, then

affecting the sensitivity to SEU faults. Unlike the RISC-V, the ARM

core used in this work is not fully customizable, which restricts

the possibility of applying fault tolerance techniques and also to

improve the reliability in the processor-level.

As future work, we intend to integrate the predictor with a

fault-tolerant version of the RISC-V processor and evaluate the

reliability of the systemwith neutrons radiation test. That processor

is currently under development in our research group, focusing on

the application in reliable systems, such as CubeSats.
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