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ABSTRACT
Differential Evolution (DE) is a powerful and versatile algorithm 
for numerical optimization, but one of its downsides is its number 
of parameters that need to be tuned. Multiple techniques have been 
proposed to self-adapt DE’s parameters, with L-SHADE being one 
of the most well established in the literature. This work presents 
the A-SHADE algorithm, which modifies the population size reduc-
tion schema of L-SHADE, and also EB-A-SHADE, which applies a 
mutation strategy hybridization framework to A-SHADE. These 
algorithms are applied to the CEC2013 benchmark set with 100 
dimensions, and it’s shown that A-SHADE and EB-A-SHADE can 
achieve competitive results.
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1 INTRODUCTION
Differential Evolution (DE) is an evolutionary algorithm designed 
for the optimization of continuous problems [7]. Although DE 
is a very simple and competitive algorithm, its performance is 
dependent on the control parameters used, and these are dependent 
on the problem being optimized.

It is possible to identify four parameters that need to be tuned 
in DE. These are: population size (NP), mutation scaling factor 
(F), crossover rate (CR) and the mutation strategy used. Since it is 
time consuming to find a good setting for these parameters to each 
problem that needs to be optimized, it is desirable to have an algo-
rithm that self adapt their values. Multiple methods have already  
been proposed on the literature to self adapt DE’s parameters, with 
SHADE [8] and L-SHADE [9] being examples of popular 
algorithms built for this purpose. SHADE adapts parameters F and 
CR, while L-SHADE adds a linear schema for population size 
reduction to SHADE, such that it also adapts the parameter NP. 

In this paper, it is proposed a variation for the L-SHADE al-
gorithm that uses an alternative method for the population size 
reduction, which is called A-SHADE. The main difference 
between the two population size reduction methods is that, in the

one used by A-SHADE, the value of NP decreases faster at the 
beginning of the evolution, giving the algorithm more 
generations to con-verge while still keeping the exploration 
provided by the initial population size.

This paper also proposes the use of A-SHADE in conjunction 
with a hybridization framework for the mutation strategy, based on 
the algorithm EB-L-SHADE [3]. This framework uses a second mu-
tation strategy alongside the one used by L-SHADE. The algorithm 
that uses it in conjunction with A-SHADE is called EB-A-SHADE.

The rest of this paper is organized as follows: section 2 explains 
the Differential Evolution algorithm, while section 3 shows some 
of the main self-adaptive variants of DE found in the literature, 
highlighting the algorithms SHADE, L-SHADE and EB-L-SHADE, 
which are the basis for this work. Section 4 explains the algorithms 
proposed in this work, namely A-SHADE and EB-A-SHADE. The ex-
periments are explained in section 5, while the results obtained are 
shown and discussed in section 6. The author’s final considerations 
are exposed in section 7.

2 DIFFERENTIAL EVOLUTION
Differential Evolution is an evolutionary algorithm in which the 
individuals are represented as real number vectors of the form
xi = (x1, ..., xD ), with i = [1, N P] and D being the problem dimen-
sionality. The initial population is distributed in the search space 
by a uniform random distribution.

After the creation of the initial population, the algorithm begins 
the evolutionary loop. During each iteration of the loop, each indi-
vidual in the population – called a target individual – produces a 
trial individual. The steps for the creation of a trial individual are 
mutation and crossover.

During the mutation step, a mutant individual vi is generated
from the population according to a mutation strategy. One such
strategy is DE/Rand/1/bin, defined as:

vi = xr1 + F · (xr2 − xr3) (1)

where xr1, xr2 and xr3 are distinct individuals randomly chosen
from the population.



After the mutant individual is generated, it undergoes crossover 
alongside the target individual, producing the trial individual ui . 
This operation is as follows:

ui , j =

{
vi , j if rand(j) ≤ CR or j = rand(i)
xi , j if rand(j) > CR and j , rand(i)

(2)

where rand(j) is a uniformly distributed real random number in
the range [0,1], and rand(i) is a uniformly distributed integer in the
range [1,D] so that the trial individual inherits at least one gene
from the mutant one.

Once the trial individual is generated comes the selection step: its
fitness value is evaluated and, if it’s better than it’s target individual
fitness, the trial will take its place in the next generation.

3 SELF-ADAPTIVE DIFFERENTIAL
EVOLUTION

Multiple algorithms have been proposed in the literature to self
adapt the parameters in DE [5]. Some of the most well known ones
are presented in this section.

SaDE [6] generates F and CR values for each individual using
different random distributions. It also uses two mutation strategies,
and adapts the probability of which one will be used for each trial
vector based on their success on previous generations.

Another popular algorithm is jDE [1], in which individuals can
either inherit their values of F and CR from their target vectors, or
have them regenerated following specific random distributions.

CoDE [10] has a set of predefined values for F and CR, as well as
three different mutation strategies. Each target individual randomly
selects a F and CR pair and generates three trial individuals, one
for each mutation strategy. All three trial individuals are evaluated,
and the best one is kept for the selection step.

In JADE [11], each individual’s F and CR values are generated
from the means µF and µCR , which are adapted during the evolu-
tion. This algorithm also uses a different mutation strategy and an
external archive containing individuals that were removed from
the population during previous generations, and can be selected in
the mutation step.

SHADE and L-SHADE [8, 9] are also popular self-adaptive DE
algorithms. Since these are the basis for the algorithms used in this
work, they will be presented in more detail in the next section.

3.1 SHADE
SHADE was developed using JADE as a basis, therefore it shares
multiple characteristics with it, including the mutation strategy and
theway individuals generate their F and CR values. It’s worth noting
that there are two versions of this algorithm: the one presented in
the original paper [8] and an updated one that is used as basis for
L-SHADE [9]. Since this work is based on L-SHADE, the updated
version will be explained in this section.

In place of the means µF and µCR from JADE, SHADE uses two
lists, called MF and MCR , that store each H values. During each
generation, every individual uniformly chooses an index ri in the
range [1,H], and generates their F and CR values as follows:

Fi = randc(MF ,ri , 0.1) (3)

CRi =

{
0 ifMCR,ri =⊥

randn(MCR,ri , 0.1) otherwise
(4)

where randc(MF ,ri , 0.1) represents a random value generated with
a Cauchy distribution, with mean MF ,ri and variance 0.1, and
randn(MCR,ri , 0.1) is a random value generated with a Gaussian
distribution, with meanMCR,ri and standard deviation 0.1.

At the end of each generation, the values with index k are up-
dated in these lists, with k being initialized with value 1, and being
incremented by 1 each time the lists are updated. If k > H , k is then
set to 1. The values forMF ,k andMCR,k are updated as follows:

MQ ,k =

{
meanWL(SQ ) if SQ , ∅

MQ ,k otherwise
(5)

where Q means both F and CR. SF and SCR (represented as SQ in
equation 5) are two lists that store, respectively, the values of F and
CR of the individuals that generated a successful offspring in the
current generation. The valuemeanWL(SQ ) is the weighted Lehmer
mean over the contents of SQ , and it is computed as follows:

meanWL(SQ ) =

∑ |SQ |

k=1 wk · S2Q ,k∑ |SQ |

k=1 wk · SQ ,k

(6)

wk =
∆fk∑ |SQ |

j=1 ∆fj

(7)

and ∆fk = | f (uk ) − f (xk )| is the fitness difference between the
trial individual uk and the target individual xk that was replaced
by uk for the next generation.

For the update ofMCR,k , its value will be set to⊥ ifmax(SCR ) =
0, and once MCR,k =⊥, its value will not be changed for the rest
of the evolution. If this happens, then only one gene of the target
individual will be changed in the trial individual, and that is the
gene with index j in equation 2.

SHADE also uses an external archive A, that is empty at the start
of the evolution. Whenever an individual is replaced by a better
trial vector in the population, it is sent to this archive instead of
being lost. This archive has a maximum size of NP · rarc , and when
its size exceeds this limit, at the end of a generation, individuals
are randomly removed from it until it is again at maximum size.

The individuals stored in the archive can be used during the
mutation step. The mutation strategy used by SHADE is:

vi = xi + Fi (x
p
best − xi ) + Fi (xr1 − x ′r2) (8)

This strategy is called DE/current-to-pbest/1/bin, and was first
introduced by JADE [11]. In it, xi is the target vector, Fi is its F
value, and xpbest is a randomly selected individual among the p%
best in the population, with p ∈ [0, 1]. The individual xr1 is selected
randomly from the population, while x ′r2 is selected randomly from
the union between the population and the external archive. The
individuals xr1 and x ′r2 must be different from each other, as well
as from xi .

The crossover operation in SHADE is done in the same way as
in canonical DE, with the difference that the CR value is generated
for each individual following equation 4, instead of being a global
parameter.
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3.2 L-SHADE
L-SHADE is an improved version of SHADE that adds a linear
scheme for population size reduction to it [9]. Instead of a fixed
value for the parameter NP, it has a initial size (N P0) and a final
size (N Pf ). At the end of each generation д, the size for the next
generation is computed as:

NPд+1 = round
[
NPf − NP0

MAX_NFE
· NFE + NP0

]
(9)

whereMAX_NFE is the maximum number of function evaluations
allowed for the algorithm, and NFE is the current amount of func-
tion evaluations spent.

Figure 1 shows the population size evolution, in relation to the
number of generations, for L-SHADE. The values for NP0, NPf
andMAXN FE used to generate the figure are presented in section
5.

0 500 1000 1500 2000 2500 3000 3500
Generation

101

102

103

NP

NP evolution with linear reduction

Figure 1: Population size in relation to generation number
for the L-SHADE algorithm.

3.3 EB-L-SHADE
EB-L-SHADE adds to L-SHADE a second mutation strategy called
DE/current-to-ord_pbest/1/bin [3]. This strategy works similarly
to DE/current-to-pbest/1/bin, in the way that first three random
individuals are selected, being one from the p% best individuals,
one from the population, and one from the union between the
population and the external archive. Among these three individ-
uals, the one with best fitness is called xord_pbest , the one with
median fitness is called xord_pmedian , and the worst one is called
xord_pworst . The mutation then is done as follows:

vi = xi + Fi · (xord_pbest −xi )+ Fi · (xord_pmedian −xord_pworst )

(10)
which is the same equation for DE/current-to-pbest/1/bin presented
in equation 8, but with the individuals ordered according the their
fitness values.

It is used a memoryMFCP , with size H , to store a list of values
between 0 and 1. Similar to the way they generate their F and CR
values, each individual uses the value MFCP ,ri to determine its
probability to use one of the two mutation strategies.

At the end of each generation in which at least one individual is 
replaced, the value MFCP ,k is updated. For that, first the amount of 
improvement that each strategy brought in the current generation 
is computed as:

ωm1 =
n∑
j=1

f (xi ) − f (ui ) (11)

which is the sum of the difference in fitness between all trial and
target individuals that were selected for the next generation and
were created using the strategym1. The value ωm2 is computed in
the same way as in equation 11, but using the trial individuals that
were generated with the strategym2.

The next step is to determine the improvement rate for strategy
m1 as follows:

∆m1 = min
(
0.8,max

(
0.2,

ωm1
ωm1 − ωm2

))
(12)

in which 0.2 and 0.8 are the minimum and maximum probabilities
that a strategy can have.

The valueMFCP ,k is then updated as:

MFCP ,k = (1 − c)MFCP ,k + c∆m1 (13)

in which c is a learning rate that determines how much weight the
previous value ofMFCP ,k has when computing the new value.

Since the sum of probabilities form1 andm2 should equal to 1,
the probability for an individual to choosem1 isMFCP ,ri , while its
probability to choosem2 is 1 −MFCP ,ri .

4 PROPOSED ALGORITHMS
This sections explain the proposed changes to L-SHADE, as well as
the reasoning behind them.

4.1 A-SHADE
The first proposed algorithm is A-SHADE, which means L-SHADE
with an alternative population size reduction method. In this al-
gorithm, instead of reducing the value of NP linearly, it is done
following the equation:

NPi = NP0

(
NPf

NP0

) i
MAX _N FE

(14)

Equation 14 has an exponential behavior, meaning the value of
NP decreases quickly during the first generations, and then slows
down until it reaches the final value. This behavior can be seen in
figure 2, which shows the population size evolution, in relation to
the number of generations, for A-SHADE. The values for NP0, NPf
andMAX_NFE used to generate the figure were the same used in
the experiments, explained in section 5.

The reasoning behind this change is as follows: with the recom-
mended values of NP0 = 18 · D and NPf = 4 for L-SHADE [9], the
search begins with a large population, what allows a high quality
exploration of the search space. It’s not interesting, however, to
keep this value high for too long, because as the population con-
verges, less exploration happens, so that a large population will
consume the available function evaluations faster but without of-
fering a significant advantage. This slow decay of NP can be seen
in figure 1.
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Figure 2: Population size in relation to generation number
for the A-SHADE algorithm.

With A-SHADE, as figure 2 shows, the initial value of NP is kept
high. This, as with L-SHADE, allows a global exploration in the
beginning of the search. But differently than L-SHADE, the faster
decay means the algorithm doesn’t spend its function evaluations
as fast, leaving more evaluations for the smaller population sizes.
This allows for a better local search by the end of the evolution
process.

With this change, it is expected that A-SHADE may be able to
perform a more thorough local search for the optimal solutions,
without losing the global search power of L-SHADE.

4.2 EB-A-SHADE
For EB-A-SHADE, the idea is to use the alternative method for
population size reduction alongside the hybridization framework
for mutation strategies presented in EB-L-SHADE.

This way, this algorithm works in the same way as EB-L-SHADE,
explained in section 3.3. The exception to this is the NP reduction
scheme, which is the same used in A-SHADE, presented in equation
14.

With this, it is expected that the improvements provided by
EB-L-SHADE can help A-SHADE to achieve better results in the
experiments.

5 EXPERIMENTS
The experiments were run using the CEC-2013 global optimization
benchmark set, which is composed of 28 functions [2]. These are
all unconstrained functions with dimensions bound in the range
[-100,100] and a single global optimum. Their domain is also shifted,
so that the global optimum is not at the origin of the coordinate
system.

The algorithms evaluated were DE, SHADE, L-SHADE, EB-L-
SHADE, A-SHADE and EB-A-SHADE. The experiments were done
in 100 dimensions, with 104 × D function evaluations available for
each run. 30 independent runs were executed for each algorithm in
each function.

At the end of each generation, the performance of the algorithms
was evaluated with the error value of the best individual, as well as
the mean population error. The error is defined as the difference
between the objective value of the best individual found and the
objective value of the global optimum.

Statistical analysis of the results were made using the Kruskal-
Wallis test, followed by the post-hoc Dunn test, with a significance
level of 95%.

Another output at the end of each generation is the population’s
genetic diversity. The diversity is computed as a variation of the
moment of inertia method described by [4].

All codes were implemented in C++, and were run in a system
equipped with an Intel Core i7-4770, 16 GB of RAM and a Linux
OS, with distribution Ubuntu 18.04 LTS. The evaluation of the
individuals was made in parallel, using OpenMP. All codes and
results are available in https://github.com/ChrisRenka/TCC.

For DE, SHADE, L-SHADE and EB-L-SHADE, the parameters
used in the experiments were those recommended by the authors
in the literature. These parameters were:

• DE [7]:NP = 100, F = 0.5,CR = 0.9, mutationDE/rand/1/bin.
• SHADE [8]: NP = 100, p = 0.10, H = 100, rarc = 1.
• L-SHADE [9]: NPi = 18 · D, NPf = 4, p = 0.11, H = 5,
rarc = 1.4.
– EB-L-SHADE [3]: c = 0.2.

The parameters for the proposed algorithms were kept the same
as the ones used for L-SHADE and EB-L-SHADE, with the exception
being the final population size NPf . This value was changed from
4 to 10 to allow for a larger population pool in the last generations.
The complete list of parameters used for the proposed algorithms
are as follows:

• A-SHADE: NPi = 18 · D, NPf = 10, p = 0.11, H = 5,
rarc = 1.4.
– EB-A-SHADE: c = 0.2.

6 RESULTS
Table 1, in the last page, shows the results obtained in the experi-
ments. Each line presents the mean and standard deviation of the
error obtained by each algorithm for one of the functions in the
benchmark set. In boldface are the best results obtained for each
function, which were determined from the error values and the
statistical tests.

The line "Number of times among best" shows, for each algo-
rithm, in how many functions its results were among the best. The
line B/S/W (Best/Same/Worst) is comparing each algorithm to EB-
A-SHADE, and it is showing in howmany functions EB-A-SHADE’s
results were best, equivalent or worst than the results obtained by
each other algorithm.

Table 1 shows that the alternative population size reduction
achieved competitive results in these experiments, being among
the best algorithms for 17 functions with A-SHADE, and 19 with
EB-A-SHADE. On the other hand, L-SHADE and EB-L-SHADE
were among the best in 14 and 15 functions, respectively, while
DE and SHADE were among the best in 4 and 7 functions. EB-A-
SHADE achieved better results than EB-L-SHADE in 11 functions,
equivalent in 10 andworst in 7, showing that its overall performance
was superior.
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One thing to notice was the relation between A-SHADE and EB-
A-SHADE, which were equivalent in all 28 functions, even though 
EB-A-SHADE’s results were among the best 19 times, against A-
SHADE’s 17 times. That happens because of functions 2 and 4, in 
which EB-A-SHADE was equivalent to the best algorithm, while 
A-SHADE was not. This shows that the mutation strategy hybridiza-
tion used provided a small impact in the algorithm performance,
such that, when compared in isolation, the statistical analysis could
not find significant differences between them. When they are eval-
uated alongside other algorithms, though, these differences are
highlighted, meaning that, overall, EB-A-SHADE’s results are more
consistent than those of A-SHADE.

Figures 3 and 4, in the next two pages, show the convergence and 
diversity plots of all six algorithms on functions 6, 8, 9, 12, 20 and 25, 
respectively. These functions were chosen because they give a good 
overview of the behaviors observed in the experiments. In both 
plots, the X axis represents the number of function evaluations, 
while the Y axis is the error for the plots on the left, and the genetic 
diversity for the plots on the right. Both plots show the values 
averaged over 30 runs.

From these plots, it can be seen that there’s a strong difference 
in convergence behavior between DE, SHADE, both L-SHADE 
algorithms and both A-SHADE algorithms. The differences are less 
noticeable between L-SHADE and EB-L-SHADE, and between A-
SHADE and EB-A-SHADE. These observed behaviors are discussed 
in the following paragraphs.

SHADE has a fast convergence, which usually results in it achiev-
ing worst results in relation to the other algorithms – the exceptions 
being function 8, in which it’s convergence speed is similar to the 
others, and in function 6, in which it achieves good results even 
with the fast convergence. This can also be seen in the diversity 
plots, where SHADE’s diversity decreases faster than the other algo-
rithm’s. From these observations, it can be concluded that SHADE 
tends to get stuck in a local optima.

L-SHADE and EB-L-SHADE have a tendency to show an intense 
convergence by the end of the evolution, so that they are still 
converging when it ends. That’s an undesirable behavior, because it 
shows that these algorithms are not achieving the best results that 
they could. In the plots presented, this behavior can be observed in 
the error of functions 8, 9, 12 and 20, and it can also be observed 
in the diversity plots of functions 6, 8, 9, 20 and 25. In function 
20, these algorithms still achieved the best results, even with this 
behavior.

A-SHADE and EB-A-SHADE, on the other hand, showed a better 
convergence behavior, which is faster than L-SHADE’s, to the point 
that it stabilizes before the evolution ends, but is not fast enough to 
be considered premature. This shows that the alternative NP size 
reduction keeps the exploratory power of the linear reduction, while 
giving more time to the population intensify it’s results. This way, 
A-SHADE’s and EB-A-SHADE’s convergence speed lies between
that of SHADE and L-SHADE.

Analysing the diversity evolution shown in the figures, A-SHADE 
and EB-A-SHADE follow L-SHADE and EB-L-SHADE until approx-
imately 200.000 function evaluations in most functions. The excep-
tion is function 8, in which this behavior lasts until approximately 
500.000 evaluations. After this period, the diversity starts to decay

faster in the A-SHADE algorithms, in comparison to what is ob-
served with L-SHADE. This shows that the proposed algorithms 
switch to local search faster than the original ones, but without 
compromising the initial global search. This observation reinforces 
the reasoning behind the alternative NP reduction, presented in 
section 4.1.

When it comes to the difference between the algorithms with 
and without mutation strategy hybridization, they behave mostly 
in the same way in the plots. Small differences between them can 
be seen in the plots for functions 8, 20 and 25. For function 8, EB-A-
SHADE achieved a smaller error than A-SHADE, while for function 
25, this can be observed for both EB algorithms. In function 20, the 
algorithms without hybridization performed better, going against 
the overall behavior of better results for the EB algorithms. These 
observations reinforce what was observed in table 1, showing that 
the hybridization increases the consistency of the results obtained 
by the algorithms.

7 CONCLUSIONS
In this paper, two algorithms were presented: A-SHADE, which 
is a variation of L-SHADE [9] using an alternative method for 
population size reduction, and EB-A-SHADE, which applies to A-
SHADE a framework for mutation strategy hybridization [3]. These 
algorithms were applied to the CEC2013 global optimization bench-
mark set in 100 dimensions, and their results were evaluated and 
compared to those of DE, SHADE, L-SHADE and EB-L-SHADE.

The results showed that A-SHADE and EB-A-SHADE outper-
formed L-SHADE and EB-L-SHADE in this experimental setting. It 
was shown that the alternative population size reduction method 
achieves a more stable convergence than the linear population 
size reduction, giving the algorithm enough time to stabilize its 
population’s fitness before the end of the evolution process.

It was also shown that EB-A-SHADE achieved better results 
overall than A-SHADE, even though, when only the two were com-
pared, they showed no significant statistical difference. From this, 
it can be concluded that it’s possible to improve the performance 
of L-SHADE and A-SHADE through mutation strategy hybridiza-
tion, but the hybridization method and strategies used can still be 
improved.
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Table 1: Mean and standard deviation obtained for each algorithm in each function.

Function DE SHADE L-SHADE EB-L-SHADE A-SHADE EB-A-SHADE

f1
3.18e-13 ±

1.11e-13
4.55e-13 ±
0.00e+0

2.27e-13 ±

0.00e+0
2.27e-13 ±

0.00e+0
2.27e-13 ±

0.00e+0
2.27e-13 ±

0.00e+0

f2
5.56e+6 ±
1.40e+6

1.19e+5 ±

4.28e+4
1.47e+5 ±

4.87e+4
1.43e+5 ±

4.10e+4
1.53e+5 ±
3.13e+4

1.36e+5 ±

3.05e+4

f3
2.15e+7 ±
1.66e+7

3.62e+7 ±
2.32e+7

3.33e+6 ±

2.91e+6
3.32e+6 ±

3.40e+6
1.40e+7 ±
1.27e+7

1.19e+7 ±
9.27e+6

f4
4.80e+4 ±
7.96e+3

3.08e-4 ±
2.51e-4

1.57e-4 ±
1.34e-4

1.46e-5 ±

8.24e-6
8.59e-5 ±
6.08e-5

4.37e-5 ±

2.74e-5

f5
4.21e-13 ±

8.88e-14
5.46e-13 ±
0.00e+0

3.90e-13 ±

8.14e-14
3.41e-13 ±

0.00e+0
6.40e-13 ±
9.04e-14

5.57e-13 ±
8.98e-14

f6
1.93e+2 ±
2.67e+1

1.04e+2 ±

5.46e+1
1.98e+2 ±
2.75e+1

2.05e+2 ±
2.82e+1

1.86e+2 ±
3.77e+1

1.91e+2 ±
2.88e+1

f7
1.89e+1 ±
6.95e+0

5.61e+1 ±
1.17e+1

7.62e+0 ±

2.41e+0
7.07e+0 ±

1.54e+0
1.18e+1 ±
2.67e+0

1.16e+1 ±
4.24e+0

f8
2.13e+1 ±
2.08e-2

2.12e+1 ±

9.66e-2
2.13e+1 ±
4.36e-2

2.13e+1 ±
4.81e-2

2.12e+1 ±

4.67e-2
2.12e+1 ±

5.54e-2

f9
1.58e+2 ±
2.25e+0

1.38e+2 ±
2.68e+0

1.32e+2 ±

2.90e+0
1.33e+2 ±

2.40e+0
1.32e+2 ±

2.79e+0
1.31e+2 ±

3.21e+0

f10
5.58e-02 ±
2.93e-2

2.85e-2 ±
1.68e-2

1.58e-2 ±

1.19e-2
1.29e-2 ±

1.28e-2
1.28e-2 ±

7.84e-3
1.99e-2 ±

1.36e-2

f11
7.74e+1 ±
1.83e+1

1.71e-13 ±

0.00e+0
1.21e-3 ±
6.64e-4

1.48e-3 ±
7.96e-4

1.89e-13 ±

0.00e+0
1.71e-13 ±

0.00e+0

f12
8.42e+2 ±
2.29e+1

1.52e+2 ±
1.74e+1

6.54e+1 ±
9.00e+0

5.27e+1 ±
1.01e+1

4.46e+1 ±

4.59e+0
3.78e+1 ±

5.27e+0

f13
8.35e+2 ±
2.13e+1

4.01e+2 ±
5.31e+1

1.50e+2 ±
1.84e+1

1.36e+2 ±
1.75e+1

1.30e+2 ±

1.57e+1
1.09e+2 ±

1.94e+1

f14
2.31e+4 ±
2.12e+3

2.73e-2 ±

1.01e-2
7.52e+1 ±
1.05e+1

9.20e+1 ±
1.56e+1

6.39e-2 ±
1.68e-2

6.20e-2 ±
1.40e-2

f15
3.04e+4 ±
4.57 e+2

1.39e+4 ±
6.08e+2

1.56e+4 ±
6.68e+2

1.56e+4 ±
4.68e+2

1.24e+4 ±

5.50e+2
1.24e+4 ±

5.43e+2

f16
3.93e+0 ±
2.18e-1

1.76e+0 ±
1.78e-1

1.89e+0 ±
1.60e-1

1.89e+0 ±
1.39e-1

1.47e+0 ±

2.11e-1
1.54e+0 ±

1.47e-1

f17
6.66e+2 ±
5.57e+1

1.02e+2 ±

0.00e+0
1.03e+2 ±
3.36e-1

1.03e+2 ±
3.11e-1

1.02e+2 ±

0.00e+0
1.02e+2 ±

0.00e+0

f18
9.21e+2 ±
2.54e+1

2.92e+2 ±
1.89e+1

2.80e+2 ±
1.46e+1

2.79e+2 ±
1.44e+1

1.52e+2 ±

4.54e+0
1.50e+2 ±

2.70e+0

f19
6.74e+1 ±
3.79e+0

7.26e+0 ±
1.14e+0

7.31e+0 ±
2.77e-1

7.39e+0 ±
2.62e-1

4.38e+0 ±

1.83e-1
4.34e+0 ±

2.14e-1

f20
5.00e+1 ±
0.00e+0

5.00e+1 ±
0.00e+0

4.97e+1 ±

4.11e-1
4.97e+1 ±

3.92e-1
5.00e+1 ±

0.00e+0
4.97e+1 ±

4.76e-1

f21
3.73e+2 ±

4.42e+1
4.00e+2 ±
0.00e+0

3.47e+2 ±

4.99e+1
3.47e+2 ±

4.99e+1
3.60e+2 ±

4.90e+1
3.73e+2 ±

4.42e+1

f22
2.16e+4 ±
2.60e+3

1.78e+1 ±

3.20e+0
1.05e+2 ±
1.74e+1

1.15e+2 ±
2.42e+1

1.82e+1 ±

5.00e-1
1.84e+1 ±

7.12e-1

f23
3.06e+4 ±
4.89e+2

1.66e+4 ±
1.10e+3

1.48e+4 ±
7.01e+2

1.50e+4 ±
6.40e+2

1.21e+4 ±

7.78e+2
1.23e+4 ±

7.69e+2

f24
2.55e+2 ±
1.31e+1

3.17e+2 ±
1.74e+1

2.35e+2 ±

6.51e+0
2.32e+2 ±

6.19e+0
2.45e+2 ±
5.98e+0

2.42e+2 ±
5.32e+0

f25
3.87e+2 ±

9.39e+0
4.47e+2 ±
1.85e+1

3.93e+2 ±

1.01e+1
3.89e+2 ±

1.21e+1
4.09e+2 ±
1.32e+1

4.00e+2 ±
9.44e+0

f26
3.69e+2 ±
1.26e+1

4.43e+2 ±
1.69e+1

3.43e+2 ±

6.50e+0
3.38e+2 ±

5.38e+0
3.56e+2 ±
5.63e+0

3.50e+2 ±
7.41e+0

f27
1.07e+3 ±
1.94e+2

1.86e+3 ±
2.08e+2

6.91e+2 ±

9.84e+1
6.38e+2 ±

7.71e+1
8.36e+2 ±
9.32e+1

8.02e+2 ±
8.36e+1

f28
3.41e+3 ±
1.04e+3

3.37e+3 ±
1.01e+3

2.51e+3 ±

1.97e+1
2.51e+3 ±

1.61e+1
2.54e+3 ±

2.09e+1
3.09e+3 ±

9.30e+2
Number of times

among best 4 7 14 15 17 19

B/S/W 19/7/2 17/9/2 11/12/5 11/10/7 0/28/0 –
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