
Genetic Algorithm in Survival Shooter Games NPCs

ABSTRACT
Games must engage players by keeping them in the game flow. To
better define the game difficulty according to the player, Genetic
Algorithms can be used. One of the interesting characteristics of
Genetic Algorithm is that it is a non-deterministic algorithm. For the
player’s vision, it means that enemies are unpredictable. By not
knowing which NPCs he will face, the gameplay turns more
interesting. Another amusing factor for gaming is its adaptability,
causing NPCs to slowly struggle to find a way to beat the player. These
two characteristics make Genetic Algorithms good tools to make
games more entertaining. This paper aims to demonstrate this
adaptation capability in the Survival Shooter, developed by Unity
enterprise and modified by the author for the algorithm
implementation. As result, it shows that players could stay in the game
flow while playing against genetically modified enemies.

KEYWORDS
survival shooter, Genetic Algorithms, Unity, game, adaptation,
Artificial Intelligence, NPC

1 INTRODUCTION
Artificial intelligence has been present in digital games development
since - at least - the 40’s. At this time a mathematician called Raymond
Redheffer developed a computerized version of Nim, in which an
artificial intelligence played against the player [8]. Those days, the
computer used to do only mathematical instructions and discrete logic,
but these first NPC were very important in the evolution of games for
the development of new Artificial Intelligence.

Evolutionary Computing is a part of AI in which computers aim to
emulate nature’s evolutionary behavior. When an intention to carry out
a simulation of it, Genetic Algorithms are usually the answer. They are
based on the natural selection for species’ adaptation that is used in its
execution. Its operation follows around some Darwinist concepts
focused on the evolution and environment adaptation theory [2].

The purpose of these algorithms is to be adapted to the
environment until it is possible to survive the competition within it.
This evolution or adaptation of the individuals is given through the
occurrence of crossovers and mutations amongst the population, which
in turn is evaluated according to its fitting to the environment [1].

This paper demonstrates the effectiveness of this technique in
survival games where the player fights a population of Non-Playable
Characters (NPCs) which are controlled by the computer. As the main
topic of this paper, a modified version of the Survival Shooter game,
developed by Unity Technologies, was used.

In this game, the character - controlled by the player - is placed in
an environment (map), where he must survive to countless hordes of
enemies fighting him. The player's score is calculated by the number
of hordes he survives (by eliminating all enemies), and the time he
takes to achieve these goals.

Each enemy has the ability to make decisions regarding their
actions and moves. These decisions (defined in their DNA here
represented as parameters) are based on information related to the
environment in which the character is located. The positions and
actions of the players and their enemies', as well as the character’s
intrinsic attributes, such as its current health points or items, are
available for usage.

While playing, these individuals are able to make decisions based
on the moment they are “living”. They can fight the player by using
different weapons and abilities or interact with other NPCs for support.
In addition, he may choose to run away from the player by reaching a
critical damage status.

Due to the possibility of configuring several parameters for the
algorithm, many comparisons were made between these possibilities
in order to obtain the best individual’s performance in the game.
Therefore, the performance of the algorithm was tested by using real
players.

2 Genetic Algorithms
The first computational model of Genetic Algorithms was developed
by John Holland [4], who at the time, did a study on the evolutionary
processes of nature [5]. This model, described in Figure 1, can be
divided into four stages: Initial Population, Selection, Crossover and
Mutation. After the creation of the new population, the cycle starts over
again.

Alisson Steffens Henrique
Universidade do Vale de Itajaí

Itajaí, SC, Brasil
ali.steffens@gmail.com

Ricardo Martins Brasil Soares
Universidade do Vale de Itajaí

Itajaí, SC, Brasil
r3soares@gmail.com

Rudimar Luis Scaranto Dazzi
Universidade do Vale de Itajaí

Itajaí, SC, Brasil
rudimar@univali.br

Rodrigo Lyra
Universidade Federal de Santa Catarina

Florianópolis, SC, Brasil
rodrily@gmail.com

Figure 1: Genetic Algorithm Steps

2.1 Former Population
The creation of the initial population is based on random
chromosomes, seeking to fill the search space as widely as possible.
This population must be, among all the others, the most heterogeneous.

When creating a new individual, its genes are defined as presented
in Table 1.

Gene Values Description
Appearance 0-2 bunny, bear or elephant

Weapon 0-4
punch, flamethrower, missile

launch, bomb, thunder

Range 1.5-15
distance between the NPC and its

target
Health Points 30-500 character’s life

Damage 1-20 character’s attack damage

Attack Speed 0.5-2
The lower the value, the faster the

attack

Movement Speed 1-5
The reference value is 3 (player

speed)
Healer 0;1 1 is healer, 0 is not

Run away 0;1 1 run away with 25% of health
Accuracy 1-100 chance to hit target

Table 1: Genes

In games, in order to guarantee the diversity of the population, it is
common to select an initial population beforehand, ensuring that it
spreads satisfactorily through the search spectrum of the algorithm. So
players do not get frustrated in the first hordes, in addition to allowing
a greater chance of adaptation to the player's game method [6].

2.2 Selection
For adapted individuals’ selection to compose the new population,
three main methods are used: tournament, roulette, and cut. This
selection is related to the survival concepts of the fittest subjects,
described by the theory of evolution [2,3].

The chosen selection algorithm strongly impacts the application’s
final result. As this paper aims to do a genetic algorithms’ study in
games, all of the selection methods were applied, to make it possible
to choose the best one before the game begins.

Table 2 shows a comparison between the selection methods used
(applied in this paper), as well as the way in which each one impacts
the final result of the populations.

Method Features

Cut
High selective pressure, only the best individuals

will be selected

Roulette
Low selective pressure, allows individuals with low

fitness to be selected
Tournament The variation between previous methods

Table 2: Selection Methods

The game in discussion allows - when selecting the total
population size - to define the method of selection and cut range (how
many will be selected), which is usually given by a quarter of the initial
amount.

To define each individual’s score, a subject’s fitness test is used.
This test is calculated just after the death of each NPC. This
calculation, in turn, is based on three main health-related
characteristics of the individual, which are expressed in Table 3.

Metrics Default Requirements

Survival 10 Escaping and being healed by an ally

Damage
Health 0,4

For every point of damage/healing dealt
with the target

Time Alive 0,2 For every second lived

Table 3: Metrics for testing

These points are used as the basis for the fitness calculation, which
will be given by a normalized value and distributed in the interval
between the real numbers 0.9 and 1.1 [5]. The normalization of this
fitness is described by the equation:

𝐸(𝑖, 𝑡) = 𝑀𝑖𝑛 + (𝑀𝑎𝑥 −𝑀𝑖𝑛) ∗
𝑟𝑎𝑛𝑘(𝑖, 𝑡) − 1

𝑁 − 1

Equation 1: Fitness Standardization

Where: (I) Min is the value of the evaluation that will be assigned
to the worst ranked individual; (II) Max is the value of the evaluation
that will be assigned to the best-ranked individual; (III) N is the
number of individuals in the population; and (IV) Rank (i, t) is the
ranking of individual i in the population kept by the algorithm in
generation t.

2.3 Crossover
After the best individuals of the population have been selected, the
crossover process begins. In this stage the exchange of genes occurs
between the selected individuals, seeking to generate new individuals
that are variations of the winners.

There are two most common methods for this cross: Simple
Arrangement and Same Species. The arrangement method consists of
crossing the individuals two by two, based on the order in which they
appear. This simple crossover between the parents is based on the
exchange of chromosomes for the generation of DNA, as it happens
with living beings. An example of its operation in the game can be seen
in Figure 2.

XI Computer on the Beach
2 a 4 de Setembro de 2020, Baln. Camboriú, SC, Brasil Henrique et al.

414

Figure 2: Simple Crossover

The number of individuals generated by this technique grows
exponentially as shown in Equation 2, where n is the number of
individuals selected. Therefore, in cases where the selected population
is very large, it was chosen to eliminate surplus individuals in a random
manner.

𝐴4,5 = 𝑛² − 𝑛

Equation 2: Number of individuals

Much like the Simple Arrangement method, the Same Species
method adds a limitation to these arrangements, making only
individuals with the same appearance gene to crossover. In this mode,
it is frequent the occurrence of individuals without pair, which in turn
results in the death of the same and disappearance of the species. For
this reason, the method is considered ineffective in experiments where
the selected population is small.

2.4 Mutation
After crossover, there is a chance whereas the new individual
undergoes a mutation. If this happens, he will have new information,
which does not come from any of its parents. This mutation occurs in
a random manner and it must have a low probability, since otherwise,
the behavior of the population will become very random and non-
adaptive [5].

The initial mutation rate was 5%, but two rules were implemented
that could change it during execution. These rules have as main factors
of influence the difficulty that the player demonstrates, and the
domination of some species.

The difficulty is set based on the average damage taken by the
player during the last 3 rounds. If this damage is less than 25% of the
player's life, then it is considered that the hordes are very easy. If that
percentage reaches above 75%, it is considered difficult. And values
between 25% and 75% are considered average.

Depending on the options chosen by the player, it is possible to
increase or decrease the mutation rate according to the relative
difficulty to generate more heterogeneous populations.

The domination of a species occurs when more than 80% of the
individuals have same appearance (Rabbit, Bear or Elephant). This
indicates a convergence of the algorithm and that the evolution of
individuals tends to stabilize. In this case, it is also possible to
temporarily increase the mutation rate of this gene to thereby obtain
individuals of different species.

The system still allows the player to choose the number of genes
that will be modified if a mutation occurs, allowing mutations to
generate higher or lower genetic variability.

3 Survival Shooter
The game referred by this article was developed by Unity company
and consists of a character controlled by the player who must survive
to endless hordes of enemies. To defend itself, the player relies on a
machine gun with unlimited ammunition. The game environment
consists of a children's room in which the character, who is a baby,
must fight against rabbits, bears and plush elephants that attack him
constantly. The game ends only after the player's death.

The original version was modified to allow the inclusion of the
Genetic Algorithm and increase the variety of enemies. Figure 3 shows
the original version.

Figure 3: Survival Shooter original version

4 Performance
In order to analyze the performance of the algorithm, different
configurations were defined to find the one that best suits the game.
Table 4 shows some of the settings applied in the algorithm, relating
the selection method to the population, and showing the average fitness
of the population.

Config Average Fitness
Roulette 20 20.57
Roulette 60 12.56
Roulette 80 15.22
Roulette 120 10.95

Cut 20 29.05
Cut 60 28.02
Cut 80 62.45
Cut 120 54.19

Tournament 20 21.16
Tournament 60 15.6
Tournament 80 15.22
Tournament 120 17.06

Table 4: Fitness by settings

The average fitness represents in a proportional way the average
performance of the individuals in the round. By analyzing each
selection method separately, it is possible to see that even the worst
results of the Cut method are still better than the ones best adapted
using Tournament and Roulette, as shown in Figure 4.

XI Computer on the Beach
2 a 4 de Setembro de 2020, Baln. Camboriú, SC, Brasil Henrique et al.

415

Figure 4: Comparison between selection methods

This behavior is due to the fact that the selection by the Cut is the
most demanding and will always pass only the most adapted
individuals to the next generations. In addition, it is well known that
the Roulette and Tournament methods tend to take a larger number of
generations to find optimal competitors. In contrast, they tend to fall
into local optima with a lower frequency than the Cut method.

Based on these preliminary results and considering that games
must obtain results in a short space of time, new tests were done. They,
in turn, are restricted to experiments of settings with the Cut method,
whose configurations can be verified in Table 5.

Population Selected Population Selected
20 5 80 40
20 10 80 50
20 15 80 60
60 15 120 10
60 20 120 20
60 30 120 30
60 45 120 40
80 10 120 60
80 20 120 80
80 30
Table 5: Different settings for the cut selection method

After running these new experiments, some results of the
algorithm were selected from settings that stood out. These results can
be seen in Figure 5.

Figure 5: Best configurations for the cut selection method

The two configurations with the worst adaptation results were: one
with a population of 80 individuals of whom, 60 were selected as
survivors, and other, with 20 individuals from which, 10 were selected.

The configurations with 80 individuals were the most varied in
general, spreading all along the search space, according to the number
of individuals selected at each generation. The cut to the best 20
individuals, for example, even though it does not show a good final
adaptation, shows excellent results in the generations between 15 and
20.

The configurations with 80 individuals cut to the 30 best
individuals and 120 individuals with the cut positioned among the first
20 have the best results obtained in the experiments. Both have good
results, but different characteristics. While the Cut 80/30 method has
almost linear performance and few significant changes in fitness
averages, the Cut 120/20 has had several ups and downs over the
generations.

The behavior of the chart may have been caused by the small
number of individuals selected, which tends to result in loss of genetic
diversity. With this loss of diversity, a premature convergence of
individuals occurs, which leads to an increase in the mutation rate of
the algorithm. In this way, the next generations become more random
and fall again.

When it comes to gaming applications, however, a configuration
is needed that will quickly achieve satisfactory values. Therefore, it
was decided to use in the game the configuration with 120 individuals
of which the best 20 are selected. In this way, the game tends to be
more challenging for the player, even for the first runs.

5 Experiments
The experiments involved 18 players - with previous experience in this
kind of games - whom after taking the test of the game, answered a
questionnaire about it.

These participants played until their main character died. In
relation to the number of hordes each one survived (which can be seen
in Figure 6), the behavior approaches a normality curve, with the
average number of rounds surviving about 12.

XI Computer on the Beach
2 a 4 de Setembro de 2020, Baln. Camboriú, SC, Brasil Henrique et al.

416

Figure 6: Players dead by run

As the hordes are composed of only 20 individuals, the generations
go through every 6 hordes. This means that most players have been
defeated by members of the first two generations of the algorithm. And
even the player who survived the highest number of rounds, was
defeated by individuals of the sixth generation of the algorithm. Still,
on the performance of the algorithm, Figure 7 demonstrates the test
time (also playing time) of each participant.

Figure 7: Played time

In this case scenario, it is noticed that on average the players
remained alive for 20 minutes, which leads to an average time of one
and a half minutes per horde (considering the average of 12 hordes).
One of the players survived the game for only four and a half minutes,
ultimately dying in the second round. Firstly, it was assumed that this
situation was due to the fact that the initial population (which is
generated randomly) had been very fit during this execution.

By conducting a more detailed analysis of the execution however,
it was possible to discover that unlike the initial hypothesis, the first
population generated in this execution was slightly below the initial
fitness average. The player had died prematurely in the second round
for reasons of mechanics of the game. Not having understood the
operation of the weapon grenade, he ended up committing suicide.

On the evolution of the genes, a standardized analysis was made
where the algorithm fitness is compared with the characteristics of the
individuals. Figure 8 demonstrates this comparison for one of the tests
performed with players.

Figure 8: Evolution of individuals characteristics in Player A
match

It is possible to perceive that some characteristics behave in a way
directly proportional to the fitness, while others, in an inverse way.
Thus, as the algorithm evolves, the parameters define the enemy
attack’s damage, distance and speed. In contrast, healers and enemy’s
movement speed decreases. The chart presents an interesting behavior
because it intuitively should be increasing. This expected behavior can
be seen in Figure 9.

Figure 9: Evolution of individuals characteristics in player B
match

As in Figure 8, the characteristics of the individuals in Figure 9 are
some direct and others inversely proportional to the fitness level
calculated by the genetic algorithm. In this experiment, however, it is
possible to perceive a greater convergence of the characteristics in the
second generation. With the exception of the Speed gene, all of them
had a considerable increase in the second generation.

This made player B grow much faster than A, as it can be seen in
Figure 10.

XI Computer on the Beach
2 a 4 de Setembro de 2020, Baln. Camboriú, SC, Brasil Henrique et al.

417

Figure 10: Evolution enemies’ performance in different
executions

As predicted in the settings tests, a large population with an elite
selection demonstrated accelerated growth in executions, which
allowed players have an overall growing game difficulty experience,
which makes it more interesting to players [7].

When asked about the difficulty rate in defeating the enemies
(Figure 11), most players replied the difficulty of the game as normal.

Figure 11: Difficulty in defeating enemies according to players

No player considered the game as Very Hard, and only one
considered it Very Easy. This tendency to Normal difficulty indicates
a certain flow in the gameplay, which in turn meets the expected result
in relation to the gaming experience. The goal is to make the game
more challenging, but not frustrating.

In relation to the change in difficulty of the game, Figure 12 shows
the impressions of the players.

Figure 12: Difficulty evolution

Even with the algorithm evolving few generations for most
players, as the adaptation is accelerated, players might have noticed a
progressive increase in the difficulty level of the game. Although no
player has defined the changes in difficulty of the game as abrupt, some
players did not realize this change. It is believed that these are the ones
who have not passed the first generation of enemies and thus have
fought only against randomly generated enemies.

6 Conclusions
The Genetic Algorithm implemented in the Survival Shooter game is
a good alternative for adjustment of difficulty in games of this kind, as
it is able to offer a dynamic and challenging environment to the
players. Although, other alternatives like NEAT algorithms (with
Genetic Algorithms and Neural Networks), should perform better.

The players were able to notice the adaptability of the game
difficulty. Unfortunately, the research did not count on the
participation of inexperienced players, and it is not possible to affirm
the adaptability of the algorithm to this public.

REFERENCES

[1] Ben Coppin. 2015. Inteligência artificial. Grupo Gen-LTC.
[2] Charles Darwin. 1859. On the Origin of Species. Routledge.
[3] Andries P. Engelbrecht. 2007. Computational Intelligence: An Introduction. John

Wiley & Sons.
[4] John H. Holland. 1992. Adaptation in natural and artificial systems. 1975. Ann

Arbor, MI: University of Michigan Press and (1992).
[5] Ricardo Linden. 2008. Algoritmos Genéticos (2a edição). Brasport.
[6] George F. Luger. 2004. Inteligência Artificial-: Estruturas e estratégias para a

solução de problemas complexos. Bookman.
[7] Jeannie Novak. 2010. Desenvolvimento de games. São Paulo: Cengage Learning

(2010), 354–355.
[8] Raymond Redheffer. 1948. A Machine for Playing the Game Nim. Am. Math.

Mon. 55, 6 (June 1948), 343–349.

XI Computer on the Beach
2 a 4 de Setembro de 2020, Baln. Camboriú, SC, Brasil Henrique et al.

418

