
A Basic Microkernel for the RISC-V Instruction Set Architecture
Benjamin William Mezger
University of Vale do Itajaí, Brazil

ben@edu.univali.br

Fabricio Bortoluzzi
University of Vale do Itajaí, Brazil
Noroff University College, Norway

fb@univali.br

Cesar Albenes Zeferino
University of Vale do Itajaí, Brazil

zeferino@univali.br

Paulo Roberto Oliveira Valim
University of Vale do Itajaí, Brazil

pvalim@univali.br

Douglas Rossi Melo
University of Vale do Itajaí, Brazil

drm@univali.br

ABSTRACT
Computer processors provide an abstract model known as the
instruction set architecture, which serves as an interface between
the available hardware and the software. Application developers
need to communicate with these types of hardware, and having to
learn each computer specification is difficult and time-consuming.
Operating systems provide an abstraction towards the available
computer hardware and user software. They manage computer
resources to enable application programmers to communicate with
the available hardware. This work introduces an academic-oriented
operating system for the RISC-V architecture, a de facto instruction
set architecture standard, and compares the solution with other
small operating systems using the same architecture. As the main
contribution, this work provides an extensible operating system to
introduce students to operating system development.

KEYWORDS
Operating Systems, Computer Architecture, RISC-V.

1 INTRODUCTION
One of the essential software of a computer system is the Operating
System (OS), whose job is to provide application programmers
an abstract set of resource interfaces of the hardware without
worrying about the hardware complexity it needs to make use
of [1]. Application programmers occasionally need to store data
into a disk, read data from memory, connect and communicate with
a remote host without worrying about how to access and use the
functionality provided by the hardware, so it depends on the OS to
manage these resources for them.

The OS acts as an intermediary between the user and the
computer hardware. The OS provides an abstraction by enabling
users to concentrate on doing their necessary tasks or software
developers to engineer applications with ease [1].

With the demand for small, portable, and straightforward OS for
deploying on embedded computers, there has been a broad category
of operating systems developed for each purpose. In contrast,
computer architecture research has tried to simplify computer
components for easier integration and better performance [2].

The RISC-V is an open Reduced Instruction Set Computer
(RISC) Instruction Set Architecture (ISA) which enables internal
modification and design. Berkeley University developed it to reduce
the cost of software by permitting more reuse with an open ISA.
The RISC-V implementation can be easily extended by designing
custom extensions when additional functionality is desired [3].

The study of OS and computer architecture has been highly
dependent on current technology. However, these technologies are
either proprietary, hardening internal review, or too complex for
academic classes of operating systems and computer architecture
[4]. RISC-V breaks such barriers enabling students and lecturers to
enrich their class material further.

A variety of kernels have been ported to RISC-V, including the
Linux kernel [5], Amazon’s FreeRTOS [6], Redox OS [7], and the
Zephyr Project [8]. However, these solutions address the application
in embedded systems and do not focus on beginners in the study
of operating systems.

This work provides the project and implementation of a basic
microkernel for academic purposes, by enabling students and
lecturers to dive into computer system research and ease their
understanding of computer architecture and operating systems
development. This works aims to be used as a laboratory course
material for both Operating System and Computer Architecture
courses by providing a simple UNIX-based RISC-V kernel.

The remainder of this paper is structured as follows. Section 2
presents the background and a review of related work. Section
3 describes how the proposed microkernel was structured and
implemented, and Section 4 describes how to adopt this work in
OS classes. Section 5 discusses the obtained results, and Section 6
presents conclusions and future work.

2 BACKGROUND
2.1 Operating Systems
Computer software can be classified into two categories: system
programs, responsible for managing hardware resources, and
application programs, which execute the actual work that the user
requests [9]. The OS’s job is to provide application programmers a
clean abstract set of resource interfaces of the hardware, leaving
the hardware complexity to the OS, and enabling the programmer
to focus on the application they are developing [1].

Operating Systems has three main objectives:

(1) They aim to offer convenience, making computer hardware
more usable.

(2) They must enable computer system resources to be used
efficiently, for example, making sure the memory is
efficiently allocated.

(3) They must have the ability to involve, meaning that the OS
should be engineered in a way that is easy to extend, develop,
test and introduce new features [2].

XII Computer on the Beach
7 a 9 de Abril de 2021, Itajaí, SC, Brasil Mezger et al.

The kernel is an essential part of the OS, and therefore, it has
special rights comparing to other parts of the system [10]. It is
loaded into memory on boot, initializes any required services,
and waits for an event. An essential principle in kernel design
is the separation of policies and mechanisms, determining what
will be done and how it will be done, respectively. This separation
is important, as policies are likely to change over time [11].

As systems tend to grow over time, they must be engineered
carefully to work properly and be easily modified. The kernel can
be engineered as a monolithic kernel or as a microkernel.

Monolithic kernels (Figure 1) runs all services such as processes,
memory management, and interrupt handling in the kernel space,
in a layered approach. The bottom layer is the hardware, and the
upper layer is the user interface [11]. Typically, a monolithic kernel
is implemented as a single process, with all its components sharing
the same address space [2].

IPC

Scheduler and memory management

Device drivers and dispatchers

Hardware

Virtual file system and system calls

User space

Kernel space

Application

Figure 1: A common monolithic design

Microkernels (Figure 2) removes all nonessential components
from the kernel and implements them as system and user-level
programs [11]. These services are processes which are known
as a server. They encapsulate memory management, process
managing, Interprocess Communication (IPC), and so on [10]. The
microkernel’s main functionality is to provide a communication
mechanism between the client program and the servers. If the client
requires to read a file, it must interact with the file server through
communicating indirectly by exchanging messages with the kernel
[11].

Device driversUnix ServerApplication IPC

Basic IPC, scheduler and memory management

Hardware

Device drivers

Application

User space

Kernel space

Figure 2: A common microkernel design

2.2 Computer Architecture
Although there are different distinctions made between computer
architecture and organization, the former refers to what systems
and application programmers see, which are the attributes that
have a direct impact on the execution of a program, where the
latter refers to the operational unit and its interconnections that
make the architectural specifications. The ISA, the numbers of bits
used to represent data types, the Input and Output (I/O) structure,
and approaches for memory addressing are all organizational issues
that need to be structured [2].

The computer organization creates a hierarchy of hardware
attribute details transparent to the programmer, such as the
interface between the computer and peripherals, the memory
technology used, the type of processor and control signals [2].
Figure 3 presents a simple computer organization hierarchy.

ALU

Control Unit

Registers

Main memory Disk Monitor

Bus

I/O Devices

Central Processing Unit (CPU)

Figure 3: An overview of a simple computer organization

Computer architectures can be classified in Reduced Instruction
Set Computer (RISC) and Complex Instruction Set Computer (CISC).
RISC architecture provides a large number of general-purpose
registers, the use of a compiler to optimize register use, a simple
and limited instruction set, and optimizes the instruction pipeline
[12]. In a CISC ISA, the compiler needs to do very little work to
translate high-level language into assembly level. However, though
it generates smaller code sizes, it needs higher cycles per second
[13].

2.3 RISC-V
RISC-V is an open RISC ISA offering both 32- and 64-bit support.
The RISC-V’s ISA is modular, having a base architecture and
several available extensions, enabling multiple variants to coexist.
The base architecture is the RV32I, which will not be altered to
enable programmers to rely on a stable architecture. The modules
are standard extensions on which the hardware designers can
choose whether to include them or not. The modular architecture
enables small-scale applications with little energy consumption to
be deployed with the required extensions to run [3].

58

XII Computer on the Beach
7 a 9 de Abril de 2021, Itajaí, SC, Brasil Mezger et al.

RISC-V supports multiple software stacks, from executing
a single application running on an Application Execution
Environment (AEE) to multiple programmed OSs running
on a single hypervisor. RISC-V provides three modes of
execution: Machine-mode (M-mode), User-mode (U-mode), and
Supervisor-mode (S-mode), having M-mode the only mandatory
mode. Execution modes enable programmers to protect different
software stack components and guide programmers on building
secure systems. An operation not permitted by the privilege level
will cause RISC-V to raise an exception, trapping into the underlying
execution environment. Code executing in M-mode is commonly
trusted, as it has low-level access to the machine implementation.
The U-mode and S-mode are indented for conventional applications
and OS, respectively [14].

2.4 Related Work
There are numerous OS ports for the RISC-V, from lower to higher
complexity. The OSKernel is a small kernel written in Rust with
basic scheduling support [15]. The RISC-V Proxy Kernel and Boot
Loader project aim to provide a lightweight application execution
environment that hosts statically-linked RISC-V Executable and
Linkable Format (ELF) binaries [16]. The Core-OS-RISCV is an
xv6-like OS for the RISC-V with Virtual Memory support, traps,
and interrupts and process scheduling [17].

FreeRTOS has ported RISC-V RV32I and RV64I machine support,
announced by Amazon in 2019 [6]. The Linux Kernel supports
multiple architectures and has ported RISC-V in 2017 [18]. Redox
[7] is an OS written in Rust with support to multiple architectures,
including RISC-V. Finally, Zephyr, a real-time OS, has ported RISC-V
to its kernel [8].

With the growing complexity of OS and computer architecture,
many students rely on implementing a small subset of the OS or
complex proprietary ISA. There are few basic academic-oriented
resources for studying the RISC-V’s software support due to its
novelty.

Our work aims to provide an academic-oriented kernel for
the RISC-V ISA, enabling lecturers and researchers to apply the
proposed microkernel in OS and computer architecture classes and
students to build their OS.

3 MICROKERNEL DEVELOPMENT
Figure 4 gives a brief overview of how the proposed microkernel is
structured. From top to bottom, user-mode runs as the last layer
of the abstraction, in which user programs and device drivers
run. The second layer is where the Interprocess Communication
(IPC), memory management, and the Central Processing Unit
(CPU) scheduler executes. The third layer represents hardware and
software communication in an abstract manner. The underlying
layer shows SiFive’s System-on-Chip (SoC) processor architecture
doing the communication both ways with the kernel.

The kernel layer contains the bare minimum core functionality
for the system to work. It is platform-dependent on the RISC-V, but
it provides extensibility for different architectures. The primary
function of the last layer is to provide a set of privileged kernel calls
to drivers and servers, including writing to I/O ports and copying
data between addresses and spaces.

Application
program

Device
drivers

Interprocess
communication

Memory
management CPU scheduling

Message exchange

Kernel mode

User mode

E31 Core

TileLink Bus Matrix

Debug

CLINT

PLIC

Physical Memory protection

16KB I-Cache 64KB DTIM

Front PortPeripheral
PortSystem Port

Local interrupts

Global interrupts

JTAG / DTM

Figure 4: The microkernel and the HiFive1 board overview

3.1 Materials
This work uses the C language and RISC-V assembly language
for the implementation of the microkernel. The latter is used to
initialize the required CPU components and configure the processor
to run in kernel-mode, user-mode, handling traps, exceptions, and
saving and restoring context.

Qemu’s RISC-V machine platform [19] is used to run the
generated kernel binary and remote debugging with GNU GDB
debugger. SiFive provides their custom Software Development Kit
(SDK) for developing on their custom development board. However,
to enable interoperability against different RISC-V boards and
machines, the kernel is compiled without the SDK, which results
in a smaller binary size. The kernel is also compiled without GCC’s
standard library and implements crt0.S, required by the compiler,
enabling custom execution startup routines linked into a C program,
for performing any initialization work required by the kernel before
calling the program’s main function.

3.2 Processes
A process may be represented as an entity that consists of some
elements. Two essential elements of a process are program code
and a set of data associated with the code. While the process is

59

XII Computer on the Beach
7 a 9 de Abril de 2021, Itajaí, SC, Brasil Mezger et al.

executing, it can be uniquely characterized by some elements, for
example: (i) the current state, such as running if the process is
currently being executed; (ii) the Program Counter (PC) pointing
to the next instruction to be executed; (iii) memory pointers of
the program code and data associated; and so on [20]. This work
provides two distinct C functions to simulate a process. Therefore,
it requires recompilation of the kernel when updating one of the
process functions if one needs an update.

3.3 Trap handling
Traps are ways of the CPU notifying the kernel when an error
occurs, or action is required. RISC-V uses a function pointer to a
physical address in the kernel. When a trap occurs, RISC-V switches
to M-mode and jumps to the function address.

When the kernel is booting, it calls _setup_mtrap for setting
mtvec to the address of _trap_entry, finally, it enables RISC-V’s
Direct Mode Access (DMA) and M-mode interrupts. The state
diagram of Figure 5 shows the _setup_mtrap. When a trap
happens, RISC-Vwill jump to the address of _trap_entry (Diagram
6). _trap_entry will save the current state of the registers by
allocating space in the stack pointer, saving the current stack pointer
to the first function argument, and jump and link to trap_handler.
The C function expects to receive a trapframe_twith the previous
stack information. The trapframe_t has the previous register’s
state, the trap code, epc, cause and any required RISC-V Control
Status Register (CSR) for handling traps.

The trap handler will catch the error and jump to the function
related to the error code, treat it, return to trap_handler, and
finally, restore the context and return. The errors are statically
mapped into an array of function pointers. This approach enables
easy jump to trap handlers by using the map as a jump table.

_setup_mtrap

load address
_trap_entry

Write _trap_entry
address to mtvec CSRSet direct mode

Enable
machine-mode

interrupt

Figure 5: State diagram of the trap setup

3.4 Execution modes
The system memory is structured into segments, where each
segment stores the context of a mode (U-mode and S-mode) with
the appropriate read, write and execute flags. The S-mode code

_trap_entry

SAVE_CONTEXT

Set first argument
to stack pointer

Jump and link
trap_handler

Set exception PC
back to stack pointer

RESTORE_CONTEXT

Set mstatus to
machine-mode

Figure 6: State diagram of the trap entry

has a predefined protected memory location, any other mode that
tries to access the S-mode memory address space will receive an
exception. When the kernel has been set up, it allocates a memory
segment for the U-mode before switching to it. The U-mode address
space has read, write, and execute permissions within its segment.

When the CPU enters S-mode, it initializes the CPU timer and
software interrupt handlers required to be treated if an interrupt
occurs. Figure 7 shows all context the supervisor keeps track of
when running. The S-mode controls U-mode related tasks, some
of the available hardware and software interrupt. The supervisor
keeps the U-mode context in a global C-language struct, keeping
a pointer to all of these components.

Supervisor-
mode

User-mode User
processes

Timer
interrupt
controller

CPU
interrupt
controller

Software
interrupt
controller

Figure 7: The supervisor hierarchy overview

The U-mode is responsible for creating a map of all the required
processes to run. This mode runs indefinitely unless any error
happened or an interrupt is triggered. While U-mode is being
executed by the CPU, the timer will trigger an interrupt when
the S-mode is supposed to run again. This scenario is illustrated in
Figure 8.

60

XII Computer on the Beach
7 a 9 de Abril de 2021, Itajaí, SC, Brasil Mezger et al.

Run forever

User-mode
entrypoint

Create user
process

Interrupt user-modeTimer interrupt

Figure 8: Activity diagram of the user-mode

3.5 Extending the kernel
The kernel is designed to facilitate development, support multiple
architectures, and facilitate new components to be implemented in
the kernel. Figure 9 introduces how the code-base is structure.

The driver directory is shown in Figure 9 (a). It holds all available
drivers supported by the kernel, enabling each to be compiled
separately by updating the make.config file. It also specifies which
drivers should be compiled built into the kernel.

The kernel supports multiple architectures by creating the code
in the arch directory, as seen in Figure 9 (b). Although this work
provides only RISC-V support, researchers can easily add new
architectures by using different architectures as class material.

The supervisor, scheduler, and any kernel-related code are
located in the kernel directory, as shown in Figure 9 (c). Although
main.c initializes the kernel, the init.c handles the architecture
type during compilation by checking the specified C-language
macro passed as a compiler argument.

Public and private Application Programming Interface (API)
headers are located in the include directory in Figure 9 (d),
enabling APIs to be easily accessed, modified, and propagated
against the kernel upon compilation.

The kernel requires a shared library with general utilities, such
as printing and string manipulation, enabling all packages to
use the available library code, like printk for outputting kernel
information through Universal Asynchronous Receiver-Transmitter
(UART), as seen in Figure 9 (e).

The kernel compilation is managed with a global Makefile,
which recursively reads the make.config for each package,
enabling packages to be individually compiled with their respective
flags and options.

4 ACADEMIC ADOPTION
4.1 The kernel as a course material
This work can be applied in OS classes in three main topics:
(i) processes and threads, (ii) memory management, and (iii)
I/O operation. Due to the lack of file-system support and a
robust memory management system, some topics may have to
be implemented into the kernel by the student during or before the
course.

drivers/

kernel/

arch/riscv

kmain.c

ctr0.S

init.c

cpu.c

uart.c

include/

kernel/

arch/

drivers/

trap.c

mem.c

lib/

string.c

printk.c

supervisor.c

(a)

(b)

(c)

(d)

(e)

Figure 9: The microkernel package organization.

This work provides static user-programs that enable students
to attach processes to the scheduler in user-mode. This approach
improves the student’s understanding of processes and scheduling
and enables the implementation of complex process management
solutions.

Although this work provides segmented memory, students can
either implement a better memory-model or understand how
memory is handledwithin kernel-mode and user-mode. The student
may either run and modify the code during development or analyze
memory with a debugger or Qemu-like system.

The I/O subsystem enables an understanding of how the system
communicates with the external environment. The kernel currently
supports only UART-based communication, which could help
students understand how the I/O system works and port new I/O
components into the kernel.

61

XII Computer on the Beach
7 a 9 de Abril de 2021, Itajaí, SC, Brasil Mezger et al.

src / supervisor . c :32: [supervisor_mode_entrypoint] 1 Entered supervisor mode with kcontext 0x80001418
src /cpu.c :130: Number of CPU harts is 1
src /cpu.c :141: Address of cpu is 0x80000c5c
src / interrupt . c :194: [init_interrupt] 1 Registering interrupt handler
src / interrupt . c :150: [_init_cpu_intrp] 1 Address of CPU 0x80000c5c interrupt controller is 0x80000058
src / interrupt . c :182: [_init_software_intrp] 1 Software interrupt 0x80000c54 enabled for cpu Ox80000c5c
src / exceptions . c :54: [_init_cpu_intrp] 1 Failed to register CPU 0x80000c5c EXCP handler 0x200103be for code 12
src / exceptions . c :54: [_init_cpu_intrp] 1 Failed to register CPU 0x80000c5c EXCP handler 0x200103be for code 13
src / exceptions . c :54: [_init_cpu_intrp] 1 Failed to register CPU 0x80000c5c EXCP handler 0x200103be for code 14
src / exceptions . c :54: [_init_cpu_intrp] 1 Failed to register CPU 0x80000c5c EXCP handler 0x200103be for code 15
src /pmp.c:14: [init_pmp] 1 Address of PMP is 0x80000d80
src /pmp.c:24: [init_pmp] 1 Address of PMP config is Oxf
src / supervisor . c :70: [supervisor_mode_entrypoint] 1 Created user SP 1 0x80001108
src / interrupt . c :107: [_init_timer_intrp] 1 Address of Timer interrupt controller is 0x80000c54
src / interrupt . c :122: [_init_timer_intrp] 1 Timer interrupt EXCP registered for 0x80000c54 id 7
src / interrupt . c :132: [_init_timer_intrp] 1 Timer interrupt 0x80000c54 enabled for cpu Ox80000c5c
src / supervisor . c :74: [supervisor_mode_entrypoint] 1 Droping to user−mode

Figure 10: Boot log

The package architecture shown in Figure 9 enables a student
to choose a component to study: (a) relates to device driver code
and communication ports; (b) holds all RISC-V related code, trap
handling, and memory management; (c) contains kernel-related
logic, such as supervisor and initialization; (d) holds all interfaces
and C headers; and (e) keeps the shared library, such printing, and
string support. This structure facilitates finding a way around the
kernel.

4.2 Constructionist Approach
Relevant principles for the organization of complex learning
processes are defined in [21]. Based on those principles, it should
be possible to stimulate the interaction between students and the
OS by:

• interaction spirals, where the student can continuously build
on what they have already learned.

• lectures covering key topics, leaving students with the
responsibility to play an active role in filling the gaps left by
theory with practice.

As a result of this constructivist approach, students should feel
empowered for autonomous interaction with his learning object,
the OS. Lecturers, on the other hand, should place themselves as
mediators capable of answering questions in a reflexive fashion,
causing students to think instead of reacting to ready-made
answers.

Our constructionist goals when creating the OS target the
acquisition of progressive success, to be achieved along the time,
based on these assumptions:

• Students are not familiar with operating systems when they
start having classes. Experimentation to be held on the OS
must facilitate taking the right decisions and following the
right direction.

• The environment where students practice is adequate, and it
should not add unnecessary complexity for the interaction
with the OS when testing for a hypothesis.

• Hacking the OS should be as close as possible to more
complex systems, given the proportions.

• Group interaction, although optional, should be made
possible and bring richer experiences.

5 RESULTS
5.1 Kernel execution
The supervisor first initializes the required CPU utilities before
initializing all the interrupt handlers and exception trap handlers.
By default, interrupts are disabled when executing the supervisor,
preventing any interrupt from happening while configuring any
components or executing any other task. This initialization is
illustrated in Figure 10, outputting the supervisor logs.

The kernel then creates the U-mode memory segment and locks
its memory segment before switching to U-mode. The lock is
required to avoid any other mode to read, write, or execute from
the kernel segment. Finally, the supervisor starts the timer and
switches to U-mode, enabling user-related processes to run.

The supervisor logs information about the important actions
as they happen, such as initializing or catching an interrupt. All
interrupts must be initialized before dropping to U-mode, but they
may be enabled or disabled at run time. In U-mode, the call to C’s
libc function printf raises a system call exception, allowing the
supervisor to catch it, treat it, and return the result to the caller.

When the kernel raises a timer interrupt, it switches back to the
supervisor, calls the interrupt handler, disables the timer within
its function scope, and runs the user-space process. Any interrupt
generated by the U-mode is triggered and returned to the caller.

5.2 Cost and performance
The kernel is compiled against GCC’s version 8.3.0 with no
optimization flags enabled, targeting the Sifive’s HiFive1 Rev-B
development board, among with FreeRTOS and Zephyr for size
comparison.

62

XII Computer on the Beach
7 a 9 de Abril de 2021, Itajaí, SC, Brasil Mezger et al.

The binary size is computed by running GNU’s stat, which
displays information related to a file. The resulting binary is 123KB,
4.3 times smaller comparing to FreeRTOS basic example application,
which resulted in a binary of 560KB, and 2.7 times smaller than
Zephyr (367KB) with the default kernel configuration. This result
is due to the higher complexity of the compared kernels.

Given the HiFive1 board runs a SiFive E31 core, and can operate
up to 320MHz, we can divide the cycle count from CSR cycle
register by the operation frequency, resulting in the execution time.
Table 1 presents the cycle count of the supported modes.

Context Cycles Time (ms)
Boot process 48,872 9.16
Supervisor-mode initialization 290,927 54.54
User-mode initialization + process 39,379 7.38

Table 1: Kernel cycle count per mode

The total kernel execution time, from boot up to the execution
of a hello world process in U-mode, took 37,300,080 cycles.
Comparing with FreeRTOS executing the same task, the cycle count
was 36,295,935 cycles. When comparing with Zephyr, it took a total
of 36,562,675 cycles, being very close to FreeRTOS. The complexity
and code optimization of both Zephyr and FreeRTOS are much
greater in comparison to this work, therefore they are expected to
have fewer cycles. However, our proposal presented a similar cycle
count.

6 CONCLUSIONS
The developed kernel has shown a cycle count similar to FreeRTOS
and Zephyr, and a smaller binary size due to its simplicity and lack
of compiler and code optimization. The comparison against other
kernels helps lecturers to decide whether to apply this kernel in
laboratory classes or the others.

The simplicity of the kernel enables a newcomer to center
the attention on studying how an OS can be developed and
integrated with the available hardware. The provided kernel
organization enables porting new architecture and features when
required. RISC-V helps academics to entirely study the design and
specification of the architecture, due to its open ISA design and
rich software support.

This work presents a small and extensible kernel by providing a
segmented memory management, process scheduling, supervisor
and user-mode support, and a structure for porting new architecture.
This work is not intended to run on a production environment, as it
lacks security measures, scalability and has little driver support. The
missing features can all be improved in future work by students and
lecturers during classes as a learning opportunity or as a research
topic by extending or improving this work.

ACKNOWLEDGMENTS
This work was financed in part by the Conselho Nacional de
Desenvolvimento Científico e Tecnológico (CNPq) [grants number
315287/2018-7 and 436982/2018-8],

REFERENCES
[1] Andrew S. Tanenbaum and Herbert Bos. Modern Operating Systems. Prentice

Hall Press, Upper Saddle River, NJ, USA, 4th edition, 2014. ISBN 9780133591620.
[2] William Stallings. Operating Systems: Internals and Design Principles. Prentice

Hall Press, Upper Saddle River, NJ, USA, 7th edition, 2011. ISBN 9780132309981.
[3] David Patterson and Andrew Waterman. The RISC-V Reader: an open architecture

Atlas. Strawberry Canyon, Berkeley, California, 2017.
[4] M. D. Hill, D. Christie, D. Patterson, J. J. Yi, D. Chiou, and R. Sendag. Proprietary

versus open instruction sets. IEEE Micro, 36(4):58–68, 2016.
[5] Damien Le Moal Atish Patra. Linux kernel on risc-v: Where do we stand?, 07

2018. Western Digital.
[6] Jeff Barr. New – risc-v support in the freertos kernel, February 2019. URL

https://aws.amazon.com/blogs/aws/new-risc-v-support-for-freertos-kernel/.
[7] Jeremy Soller. Redox-os, 04 2015. URL https://www.redox-os.org.
[8] Linux Foundation. Zephyr, 05 2019. URL https://www.zephyrproject.org/zephyr-

rtos-featured-in-risc-v-getting-started-guide/.
[9] Andrew S Tanenbaum and Albert S Woodhull. Operating Systems Design and

Implementation (3rd Edition). Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
2005. ISBN 0131429388.

[10] Benjamin Roch. Monolithic kernel vs. microkernel. TU Wien, 1, 2004.
[11] Abraham Silberschatz, Peter Galvin, and Greg Gagne. Applied operating system

concepts. John Wiley & Sons, Inc., New York [u.a.], 2001.
[12] William Stallings. Computer Organization and Architecture: Designing for

Performance. Prentice Hall Press, Upper Saddle River, NJ, USA, 8th edition,
2009. ISBN 9780136073734.

[13] Andrew S. Tanenbaum. Structured Computer Organization (5th Edition).
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2005. ISBN 0131485210.

[14] Andrew Waterman, Yunsup Lee, Rimas Avizienis, David A. Patterson,
and Krste Asanović. The risc-v instruction set manual volume ii:
Privileged architecture ratified version 1.11. Technical Report v.20190608,
EECS Department, University of California, Berkeley, Jun 2019. URL
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-
IMFDQC-and-Priv-v1.11/riscv-privileged-20190608.pdf.

[15] Stephen Marz. Osblog, 10 2019. URL https://github.com/sgmarz/osblog. Github
Repository, Commit 76715da537e8d07e305d1c76faa925b58579291b.

[16] RISC-V. Risc-v proxy kernel, 06 2019. URL https://github.com/riscv/riscv-pk.
Github Repository, Commit 46cd5082c5d324bb843be35d8130aa9d44068d7d.

[17] Alex Chi. core-os-riscv, January 2020. URL https://github.com/skyzh/core-os-
riscv.

[18] Linux Torvalds. Risc-v port for linux 4.15 v9, 11 2017. URL https://lkml.org/lkml/
2017/11/15/640.

[19] Michael Clark. Risc-v qemu part 2: The risc-v qemu port is upstream, April 2018.
URL hhttps://www.sifive.com/blog/risc-v-qemu-part-2-the-risc-v-qemu-port-
is-upstream.

[20] William Stallings. Operating Systems: Internals and Design Principles, 9/e. Pearson
IT Certification, Indianapolis, Indiana, USA, 9th edition, 2018. ISBN 9352866711.

[21] Jerome Bruner. Toward a Theory of Instruction. Harvard University Press, Harvard,
1966. ISBN 0674897005, 9780674897007, 0674897013, 9780674897014.

63

https://aws.amazon.com/blogs/aws/new-risc-v-support-for-freertos-kernel/
https://www.redox-os.org
https://www.zephyrproject.org/zephyr-rtos-featured-in-risc-v-getting-started-guide/
https://www.zephyrproject.org/zephyr-rtos-featured-in-risc-v-getting-started-guide/
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMFDQC-and-Priv-v1.11/riscv-privileged-20190608.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMFDQC-and-Priv-v1.11/riscv-privileged-20190608.pdf
https://github.com/sgmarz/osblog
https://github.com/riscv/riscv-pk
https://github.com/skyzh/core-os-riscv
https://github.com/skyzh/core-os-riscv
https://lkml.org/lkml/2017/11/15/640
https://lkml.org/lkml/2017/11/15/640
hhttps://www.sifive.com/blog/risc-v-qemu-part-2-the-risc-v-qemu-port-is-upstream
hhttps://www.sifive.com/blog/risc-v-qemu-part-2-the-risc-v-qemu-port-is-upstream

	Abstract
	1 Introduction
	2 Background
	2.1 Operating Systems
	2.2 Computer Architecture
	2.3 RISC-V
	2.4 Related Work

	3 Microkernel development
	3.1 Materials
	3.2 Processes
	3.3 Trap handling
	3.4 Execution modes
	3.5 Extending the kernel

	4 Academic adoption
	4.1 The kernel as a course material
	4.2 Constructionist Approach

	5 Results
	5.1 Kernel execution
	5.2 Cost and performance

	6 Conclusions
	References

