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ABSTRACT
Predicting bug-fixing time helps software managers and teams pri-
oritize tasks, allocations and costs in software projects. In literature,
machine learning (ML) models have been proposed to predict bug-
fixing time. One of features highlighted by studies is the reporter
(the person who open the bug) has positive influence in the time
to resolve a bug. In this way, this paper answers the following re-
search question: How does a collaborative filtering approach perform
in predicting bug-fixing time compared to the supervised machine
learning approaches? In order to answer this question we performed
an experiment using collaborative filtering approach to recommend
the bugs that are fast to be resolved in two open software projects.
We compare our proposed approach with the ML approach related
to the literature. As a result, the collaborative filtering approach
outperforms the supervised ML achieving an F-measure of 74%
while the supervised ML achieved 66%. The collaborative filtering
approach showed to be a new perspective to predict bug-fixing time
in software projects focusing the prediction on the reporter.

KEYWORDS
Bug Fixing Time, Predict, Recommender System, Software Mainte-
nance

1 INTRODUCTION
Estimating the time to fix a bug in software projects is an important
part of the bug triage process. With the estimated time to fix a bug,
the bug is then prioritized enabling the team to plan releases, and
increase software quality and client satisfaction. Previous works
have proposed models using Machine Learning (ML) techniques
to predict bug-fixing time [1–4]. For instance, Zhang et al. [2]
applied the KNN technique to three commercial projects of CA
Technologies company. The work of Zhang et al. was replicated
in the Mozilla Firefox project by Akbarinasaji et al. [3]. Habayeb
et al. [4] propose a model based on Hidden Markov, which uses
temporal sequences of the activities performed during the triage
process.

The problem of predicting bug-fixing time can be addressed as
a Recommender System (RS) problem, predicting the time to fix
bugs and classifying whether these bugs can be fixed quickly or
slowly, helping the software manager to prioritize the software
activities [1]. Although the researches on predicting bug-fixing
time presenting good results, we understand that by using a rec-
ommender approach, one can improve predictions.

The literature shows that the person who open the bug play
the important role in the ML models. Therefore, we propose an
approach based in RS technique, the collaborative filtering (CF),

that we use the information about the reporter (person who open a
bug) and the bug. This paper aims to answer the following research
question: How does a collaborative filtering approach perform in pre-
dicting bug-fixing time compared to the supervised machine learning
approaches? In answering this question, we proposed an approach
can be applied to prioritizing bugs.

In order to validate our approach, we performed an experi-
ment with data from the issue tracking system of two open source
projects: Eclipse Platform and Netbeans. We compared the CF ap-
proach with the supervised ML approaches recurrent in literature.
Our experiments show that CF approaches outperformed the su-
pervised ML classifications. The SVD, KNNBaseline and SVD++
algorithms, which used CF, achieved an f-measure 74% of in the
Eclipse and 69% in NetBeans projects. While for traditional ML, the
best result was obtained by the Random Forest algorithm with an
f-measure of 66% in the Eclipse project and 63% in the Netbeans
project. This paper demonstrates that the CF approach is a viable
approach for predicting bug-fixing time, enabling the determination
of whether the bug will be fixed quickly or slowly. In the approach
presented, the algorithms use fewer features and less computational
power than traditional ML approaches.

This paper is organized as follows: Section 2 presents the back-
ground about recommender systems; Section 3 presents the related
work; Section 4 describes the proposed model to predict bug-fixing
time using the collaborative filtering approach; Section 5 outlines
the research methodology used to answer our research questions;
Section 6 presents the results obtained in this study and discusses
the results obtained; Section 7 details the threats to the validity of
the research; and Section 8 presents the conclusions.

2 RECOMMENDER SYSTEMS
RS produce individual recommendations for users, filtering large
amounts of information into personalized recommendations for
users. These recommendations can be classified in explicit or im-
plicit feedback [5]. In explicit feedback, the users express their
opinion about an item through ratings or a scale, therefore the feed-
back can either be positive or negative. In implicit feedback, the
system itself takes the behavior of the user as input and the feed-
back is always positive [5]. Next, we present the concepts behind
the CF.

2.1 Collaborative Filtering
The main idea of CF recommendation systems is that people have
similar tastes. For this, algorithms and methods are used to find user
preferences based on numerical ratings. Ratings in collaborative
filtering can be scalar, binary or unary. Scalar ratings are numerical
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ratings such as 1-5 or ordinal ratings such as strongly agree, agree,
neutral, disagree, strongly disagree. [6].

The items and user ratings are used to generate a user-item ma-
trix. With this information, it is possible to predict and recommend
items to users. The recommendation can be based on the similarity
between users (user-user) or items (item-item) [7]. For this pur-
pose, machine learning techniques have been applied to increase
recommendation quality.

3 RELATED WORK
Predicting bug-fix times with ML is a recurring software engineer-
ing problem in literature. Zhang et al. [2] applied the Markov-based
method to predict the number of bugs, the Monte Carlo-based
method to predict the total time required to fix a given number
of bugs, and the KNN technique to determine the effort required
for a new bug through the similarity of bugs, on three commercial
projects of CA Technologies. The kNN-based method achieved an
average weighted F-measure of 72.45% in predicting the time to fix
each individual bug.

The Zhang et al. study was replicated by Akbarinasaji et al. [3],
which used Mozilla Firefox as the dataset. The result of the time
required to fix a particular bug using the KNN approach was an
F-measure from 56% to 74%, with an average of 62.7%.

Habayeb et al. [4] propose an approach to predicting bug-fixing
time based on the Hidden Markov Model (HMM), which allows
work with stochastic processes. They used the Mozilla Firefox
project as dataset. The data of bug report activities were trans-
formed into temporal activities. The temporal sequences of activi-
ties related to resolved bugs were used to train the HMM, where the
training was separated by the classification of bug-resolution time
into slow or fast. To classify the bugs, they calculated the median
number of days to fix the bugs whereby if the time to fix a bug
was less than the median, the bug was classified as fast, otherwise
it was classified as slow. The model was trained with 60% of bug
reports and 40% was used in testing. After they trained the model
by year, from 2006 to 2014, the test was performed with the current
year.

In contrast to the works cited above, the present paper proposes
predicting bug-fixing time in software projects using a ML from
a perspective of recommender system. Although, unlike previous
studies, we not only propose an approach based on the characteris-
tics of a bug or on the bug activity sequence, but also one in which
the bug reporter is at the center of the approach. In the literature,
the reporter is a feature that has increasing the performances in
reported models, but the focus of research until now has been only
on bug report similarity and the reporter is used as feature of the
models. We understand that the similarity of reporters might make
the models more accurate. Thus, differently to other works, this
study proposes the use of a recommendation approach using CF to
predict the time to fix a bug.

4 PROPOSED APPROACH
Unlike supervised ML present in literature to predict bug-fixing
time which seek by similarity between the bug reports, our CF
approach focus on the similarity between the reporters. In other
words, our approach recommends whether the bug may be fixed

fast or slow, although the similarity between the reporters based on
the history of bug reports by reporters. Our proposed approach uses
only the initial attributes of the bug when they are created, these at-
tributes are: severity, priority, identification of product, component,
operational system and platform. We concatenate this information,
forming a name of a bug. For example: ”normalP216409Windows
XPPC”, next, we encode the ”names of bug” to numerical value
in order to improve the performance of the approach. Thus, we
use the similarity between the bug reports regarding a reporter to
predict the time to fix a bug. This concept is like predict a rating of
a movie in a recommender system.

Predicting bug-fixing time is a problem addressed in literature
from two angles: classification or regression [8]. In this study, we
address this problem as a classification problem. We therefore use
the approaches proposed by Giger [1], also followed by Zhang [2]
and Habayeb [4], in which the bugs are classified as fast or slow
according to the median resolution time. If the time to resolve the
bug was less than median it is considered fast, so one may prioritize
this bug. Otherwise, it is considered slow may be postponed.

To apply our approach, we used the data available on the bug
tracking system. After extracting the data, we performed the fol-
lowing steps:

(1) Calculate the time in days (last modification - data creation)
(2) Remove outliers. (75% quartile and bugs resolved in the

same day)
(3) Classify the bugs as fast or slow according to the median
(4) Discretize the data
(5) Calculate the similarity between the reporters and bug (col-

laborative filtering)
(6) Classify the bug as fast or slow with the proposed approach
The proposed approach can be used to prioritize the bugs rec-

ommending which bugs may be fixed fast.

5 EXPERIMENT
In order to carry out the experiment, we performed the following
steps:

• Select the dataset
• Select the attributes
• Prepare the environment
• Select the ML algorithms
• Remove the outliers
• Classify the data
• Balance the dataset
• Clean the data
• Execute the ML approach
• Execute the Collaborative Filtering approach

These steps are described in further detail below.

5.1 Select the dataset and their attributes
We first obtained the Eclipse and Netbeans datasets, available on
MSR 2011 [9]. Eclipse and Netbeans are two popular open-source
projects of integrated development environments (IDE). These
datasets contain bug reports stored in MySQL format. Both the
Eclipse and Netbeans projects use Bugzilla as their bug issue track-
ing system, thus, the structure of these datasets are similar. We then
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explored the database, selecting attributes from the bug reports for
our experiments and exporting them in CSV format. We selected
those attributes from Bugzilla which were initially filled when the
person opened a bug. We intend to predict the time to fix a bug at
the beginning of the triage. The attributes used in our experiment
are listed in table 1.

Table 1: Attributes selected from dataset

Attribute Description
bug_id the bug identification
assigned_to The developer that worked on the bug
bug_severity the bug severity
priority the priority
bug_status status
creation_ts date when the bug was reported
short_desc the title of the bug
comments the bug description
op_sys the operational system where the bugs

occurred
rep_platform the platform
reporter the person who reported the bug
number of CC Users who are interested in the progress

of this bug
number of attachments number of attachments added by users

to a bug report
resolution the status of resolution
lastdiffed the date of the last modification of the

bug report
estimated_time the estimated time to resolve the bug
product_id the products
component_id the component
days the lastiffed - creation_ts in days
year_creation the year when the bug was reported
year_lastdiffed the year when the bug was resolved
mouth_creation the month when the bug was reported
mouth_lastdiffed the month when the bug was resolved

5.2 Environment and Machine Learning
Algorithms Selected

We used Google Colab to carry out the experiment. Google Colab
is an environment prepared to execute data analysis directly in a
browser 1. We selected the machine learning algorithms present
in the predicting bug-fixing time literature. The ML algorithms se-
lected can be seen in the table 2. The data explorationwas performed
with Python (version 3.6.9) and the libraries NumPy (version 1.18.5),
Pandas (version 1.0.5) and Matplotlib (version 3.2.2). These Python
libraries are used to understand the data, remove the outliers and
discretize the data. The code and dataset used in this experiment
are available in: https://github.com/brunorodriguesti/Experiment_
CF_ML_Bug_Fixing_Time.

1https://colab.research.google.com/

Table 2: ML algorithms by Studies

Algorithm Studies
Decision Tree [10] [11] [12] [13] [14] [1] [15] [16] [17]

[2] [18] [19] [20] [21] [22] [23]
Naive Bayes [10] [24] [11] [12] [14] [15] [16] [25]

[26] [27] [20] [28] [21] [29] [22]
KNN [30] [14] [31] [2] [18] [20] [32] [4] [3]

[22] [33]
SVM [13] [14] [16] [34] [35] [36] [29] [22]

[23] [33]
Random Forest [17] [37] [19] [38] [20] [39] [29] [22]

[23]

5.3 Outliers
In our experiment, we only considered the bugs that had already
been resolved, thus we used bugs with a status resolution of fixed.
The bug-fix time was calculated in days. For example, if the bugs
were resolved in the same day, they have zero days of resolution.

In treating the outliers, we removed the 75% quartile and the
bugs whose resolution were equal to zero days. The quality of the
data and the accuracy of the models was improved by removing
the outliers [25]. On analysing our dataset, we noticed that the
bug reports with zero day resolutions were not always bugs. These
reports are tests of environment or bugs resolved prior to reporting,
in other words, they were reported only for registration purposes.
We remove those bugs over 75% quartile from the dataset as they
were outliers that do not represent the reality of all types of bugs.

5.4 Classification and balancing of dataset
In order to classify the bugs as fast or slow, the approach proposed
by [1] was used. The data was divided as fast and slow according to
the formula 1. The threshold was calculate by median of days, the
Eclipse Platform dataset was 17 days and 6 days that of Netbeans.
Classification of the Eclipse project bugs resulted in 12353 fast and
12353 slow, whilst that of the NetBeans project produced both 1534
fast and slow bugs.

𝐵𝑢𝑔𝐶𝑙𝑎𝑠𝑠 =

{
𝐹𝑎𝑠𝑡 𝑑𝑎𝑦𝑠 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 <=𝑚𝑒𝑑𝑖𝑎𝑛

𝑆𝑙𝑜𝑤 𝑑𝑎𝑦𝑠 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 > 𝑚𝑒𝑑𝑖𝑎𝑛
(1)

5.5 Experiment Execution
After removing the outliers, the attributes from table 1 were used
with the supervised ML algorithms listed in table 2. We use the
following features in the supervised machine learning approach: the
reporter, the first developer, the priority, the severity, the product, the
component, the month of creation, the year of creation, the number
of cc and the number of attachment, the description of summary
and the first comment. The priority and severity attributes were
transformed into categorical features. We joined the content of the
description of the summary and description of the first comment
of bug reports in one field. For this field, we extracted the bag of
words and treated the bug report texts following the steps:

(1) convert all words to lower case
(2) remove links and html tags
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(3) remove numbers and special characters
(4) remove stop words
(5) stem words
We build a document-terms matrix with the frequency of terms,

removing one percent of the terms infrequently. Next, we use the
term frequency (TF) and term frequency-inverse document fre-
quency (TFIDF) in order to create features for classification algo-
rithms.

In our experiment, the behaviour of algorithms without the tex-
tual features was first tested and then both the features and textual
elements (summary and comment) with the goal of classifying the
bug report as fast or slow.

To run the proposed collaborative approach, we used the Sur-
prise library 2 which is a Python library built to facilitate the build
of recommender systems. Surprise only works with explicit rating
data therefore the data needed to be adapted to work with explicit
ratings. A scale of 1 to 5 was used to classify the bug resolution as
fast or slow according to table 3. Bugs with a classification from
1 to 3 on the scale were determined as fast. We tested the per-
formance of the algorithms available in the Suprise library (SVD,
KNNBaseline, SVD++, BaselineOnly, KNNWithMeans, KNNWith-
ZScore, SlopeOne, CoClustering, NMF, KNNBasic, NormalPredic-
tor). In this approach, we use only the following features: severity,
priority, product identification, component identification, operational
system and platform.

Table 3: Bugs Classified with Surprise Library

Rating Time in day
1 1 day to fix
2 greater than 1 and less or equal than 25% of percentile
3 greater than 25% and less or equal to 50% of percentile
4 greater than 50% and less or equal 75% of percentile
5 greater than 75%

5.6 Evaluation Metrics
To evaluate the performance of the models, we used the precision,
recall and f-measure. The tests were performed with 10-fold cross-
validation.

To assess classification approaches, we can use table 4. The met-
rics used to evaluate the techniques are the same as those used in an
Information Retrieval context, such as Precision, Recall, F-measure,
Accuracy [40], Receiver Operator Characteristic (ROC), and Area
under the Curve (AUC). In this paper we use the Precision, Recall
and F-measure in order to evaluation the models, the definition of
these metrics are present in this section.

Precision, also called Confidence, is the ratio of predicted positive
cases that are correctly true-positives, while the Recall or Sensitiv-
ity is the ratio of true-positive cases that are correctly predicted
positive [42]. The combination of precision and recall can be for-
mulated by the F-measure, also called F-Score. The F-measure is
the harmonic mean between the precision and the recall [6]. The
formulas for Precision, Recall and F-measure are presented in 2, 3,
and 4, respectively.
2http://surpriselib.com/

- Recommended Not Recommended
Preferred True-Positive (tp) False-Negative (fn)

Not Preferred False-Positive (fp) True-Negative (tn)
Table 4: Classification of the possible results of an item rec-
ommendation to a user [41]

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(2)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(3)

𝐹 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛.𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
(4)

5.7 Dataset
In order to evaluate our model,an experiment was performed using
bug tracking data from the following systems: Eclipse and Netbeans
available from MSR 2011 [9]. The data is available in MySQL Data-
base format. The table 5 shows data from Eclipse and Netbeans bug
reports.

Table 5: Dataset Characteristics

Dataset Bugs Period
Eclipse 87,696 2001-10-10 at 2010-06-26
Netbeans 12,091 2009-11-07 at 2010-06-29

In this experiment, only bug reports with the a resolution status
of ”FIXED” was used. There were 37,261 bugs in Eclipse and 4747
bugs in Netbeans. After removing the outliers, there were 24,863
bugs in Eclipse and 4747 in Netbeans. In categorising the bugs as
either fast or slow, there were 12,510 fast and 12,353 slow bugs in
Eclipse, and 1699 fast and 1534 slow in Netbeans. We classify the
dataset as fast and slow with the same number of bugs. The Eclipse
dataset has a total of 24,706, therefore 12,353 were classified as fast
and the same number as slow. In Netbeans, the experiment was run
with 3068 bugs, of which 1534 were classified as fast and the same
number as slow.

In order to execute the collaborative filtering using the Surprise
library, the bugs were classified on a scale of 1 to 5, where the bug
was considered fast when it was equal or less than 3 in the scale, as
explained in section 5. The table 6 shows the distribution of bugs
along this scale.

Classification Eclipse Netbeans
1 2,360 413
2 3,969 577
3 6,024 544
4 6,295 836
5 6,058 698

Table 6: Distribution of amount of bugs in scale of 1 to 5
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Finally, the Eclipse project has 1,881 bugs classified according
to the scale and 3,090 reporters. In Netbeans, there are 1207 bugs
classified according to the scale and 624 reporters.

6 RESULTS AND DISCUSSION
In this section the results of the experiment are presented. First,
the results of predicting bug-fixing time using supervised ML to
classify the bug reports as fast or slow are presented. Second, the
results using the collaborative filtering approach are detailed. In
the supervised ML approach, the experiment was binned with the
attributes without the of bug report summaries and comments and
next all attributes described in table 1 were used. These results can
be seen in the tables 7, 8, 9 and 10.

Table 7: Results of Supervised ML Approach without Textual
Features - Eclipse Plataform

Algorithm Precision Recall F-measure
Random Forest 67% 66% 66%
Decision Tree 63% 60% 61%
KNN 61% 59% 60%
SVM 40% 46% 46%
Naive Bayes 57% 26% 36%

Table 8: Results of Supervised ML Approach with all Features
- Eclipse Plataform

Algorithm Precision Recall F-measure
Random Forest 63% 65% 64%
KNN 61% 59% 60%
Decision Tree 58% 58% 58%
SVM 50% 44% 46%
Naive Bayes 58% 26% 36%

Table 9: Results of Supervised ML Approach without Textual
Features - NetBeans

Algorithm Precision Recall F-measure
Random Forest 64% 63% 63%
Decision Tree 59% 59% 59%
KNN 58% 57% 58%
SVM 44% 55% 46%
Naive Bayes 71% 21% 33%

Table 10: Results of Supervised ML Approach with Textual
Features - NetBeans

Algorithm Precision Recall F-measure
Random Forest 61% 65% 63%
SVM 63% 57% 58%
Decision Tree 55% 57% 56%
Naive Bayes 57% 52% 55%
KNN 56% 54% 55%

The Random Forest algorithm produced the best results amongst
all tests presented in this work. In literature, Random Forest has
performed well in predicting bug-fixing time [17, 23, 38, 39]. The
Random Forest is an ensemble learning method based on multi-
ple decision trees. The ensemble methods apply multiple learning
algorithms in order to classify the data [43].

It is possible to see in tables 7, 8, 9 10 that the results were best
when summaries and comments were not used. Despite the studies
showing that textual features increase the accuracy of predictions,
in the present work, textual features did not increase the perfor-
mance when used in conjunction with other features. The exception
was the SVM algorithm, which used all features (textual and not
textual) in NetBeans project.

The tables 11 and 12 show the results using the algorithms avail-
able in the Surprise library. For this approach, only the attributes
cited in 5 were used, thus ignoring textual attributes like summary
and comment in this approach.

Table 11: Results of Collaborative Filtering Approach Eclipse
Plataform

Algorithm Precision Recall F-
measure

SVD 75% 73% 74%
SVD++ 77% 72% 74%
KNNBaseline 72% 74% 73%
BaselineOnly 72% 75% 73%
KNNWithMeans 63% 79% 70%
KNNWithZScore 63% 79% 70%
SlopeOne 63% 80% 70%
CoClustering 63% 80% 70%
KNNBasic 59% 82% 69%
NMF 59% 82% 69%
NormalPredictor 68% 70% 69%

Table 12: Results of Collaborative Filtering Approach Net-
Beans

Algorithm Precision Recall F-
measure

SVD 59% 83% 69%
KNNBaseline 60% 83% 69%
SVD++ 60% 81% 69%
KNNWithMeans 60% 81% 69%
KNNWithZScore 61% 81% 69%
SlopeOne 61% 80% 69%
BaselineOnly 56% 88% 68%
NMF 58% 83% 68%
CoClustering 59% 81% 68%
KNNBasic 56% 85% 67%
NormalPredictor 69% 66% 67%

From the results presented in this work, one can see that the
collaborative filtering approaches outperformed the supervised ML
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approaches in predicting the bug-fixing time in this experiment.
Unlike supervised ML approaches, collaborative filtering focuses
on the similarity of users. In our study, we considered the reporter
to be the user in our approach. Although performing collaborative
filtering has shown better compared to the supervised machine
learning in our experiment. Our work shows that has increased
performance compared to supervised machine learning. In other
words, we can see it is possible to use the collaborative filtering
approach to predict bug-fixing time focus on the reporter present-
ing good performances without information about the developer.
We understand that collaborative filtering is a promising approach
when focusing on the recommendation of the reporter. In our pro-
posed model, it is possible prioritize the bugs that will be fixed fast
before they be assigned to a developer.

The Singular ValueDecomposition(SVD), KNNBaseline and SVD++
algorithms presented the best results in all tests using the collabo-
rative filtering approach in this work. The SVD is a technique that
identifies latent semantic factors in information retrieval, automat-
ically deriving semantic “concepts” from a low dimensional space.
The SVD++ is an improved version of SVD that considers implicit
feedback [7]. The SVD++ produced good results in this experiment,
but the time required to train the model is more expensive than
conventional SVD. The KNNBaseline algorithm, unlike conven-
tional KNN, computes the baseline, in other words it balances the
scores when there are very high or low ratings [44]. Like Habayeb
et al. [4] we do not use textual features such as the summary and
comments of bug reports. Textual features are computationally ex-
pensive [4] and the supervisedML approaches used in this study did
not demonstrate that textual features increase the performance of
predicting bug-fixing time, so in our proposed approach summaries
or comments are not used as features. A further advantage of the
collaborative filtering approach is that few features are required
to make the predictions, in other words, only the initial attributes
available in the bug tracking system before triage and described
in 5 are needed. As with any collaborative filtering approach, the
proposed approach of this study may suffer from issues such as
cold start, scalability and sparsity [45].

This study clearly shows that it is viable to recommend whether
the bug will be fixed quickly or slowly based on the reporter. Studies
have shown that the reporter has a positive influence on predicting
bug-fixing time [1, 2, 4, 32, 46–48]. The collaborative filtering ap-
proach can therefore recommend the bug-fixing time based on the
reporter, similar to what a recommender system does for the user
of a system. Reporters have different levels of experience assigning
bugs. The more experienced a reporter, the better their assignment
to the developer fixing the bug, which could take the time to fix
the bug more predictable.

Besides the reporter, the designated developer also influences
the time to fix the bug [49]. However, in our experiment, in the col-
laborative filtering approach, when we used the developer as input
of models instead of the reporter, performing the model decreases.
For instance, predicting using the developer in SVD, SVD++ and
Baseline Only the average F-measure is 45% in the Eclipse project.
In the NetBeans project, using the developer as input, the f-measure
is 63% to SVD, SVD++ and Baseline Only. The collaborative filtering
approach enables the prediction of the bug-fixing time before being
assigned to a developer. As shown in the results, we understand

it is possible to build a prediction bug-fixing time model using
collaborative filtering focus on the reporter rather than on the de-
veloper. One advantage of using the collaborative filtering approach
instead of supervised machine learning is that we can use fewer
features and use initial fields available in a bug report before it is
assigned. Another advantage of our proposed approach is regarding
the amount of data used in training and testing the approaches.
Our approach has presented a good performance on both datasets.
We used 113904 bugs reported in the Eclipse and only 3068 in the
NetBeans dataset in order to train and test the approaches. We
can note that performing supervised machine learning decreased
when the dataset contains fewer data when using the collaborative
filtering approach, the performance remained stable.

7 THREATS TO VALIDITY
Internal validity: Despite the increasing use of deep-learning
approaches in predicting bug-fixing time, which has been promising,
our experiment focused only on supervised ML approaches. The
goal of our experiment was to validate the recommender system
approach in predicting bug-fixing time and its ability to recommend
those bugs that can be fixed quickly. In other words, the model
presented in this work can be used with deep learning algorithms
and machine learning, as well as other recommender systems. The
hyperparameters of algorithms were not tuned, instead the default
hyperparameters of libraries were employed. Tests were performed
to tune the hyperparameters, however the performance did not
increase as expected.

External validity: Only two datasets were used. These datasets
are generally used in the prediction of bug-fixing time research. We
can however generalize our results. Eclipse and Netbeans are two
popular open-source projects which have their own peculiarities
arising from their community and processes. Collaborative filter-
ing approaches may be improved with user information such as
genre, age, geographic position and others. In our dataset, personal
information was not included about the reporter, which could have
improved our model. Reporter information like company or client
position, time as system user, and other personal information could
be used in the model to verify the performance of collaborative
filtering in predicting the bug-fixing time.

Construct validity: in our experiment, we calculated the time
to fix a bug in days. This assumption may not have captured the
real time to fix a bug. Also, we remove the bug reports that have
taken less than one day to be fixed and the outliers are a great 75%
quartile. We based the equation to calculate the bug-fixing time
and to the decision regarding removing the outliers based on the
current literature.

Conclusion validity: despite the results of our proposed ap-
proach overcome slightly the supervised machine learning ap-
proach, we can not claim that our proposal is better. The results
achieved by random forest are close to the proposed approach. We
can consider that the proposed approach has the potential to be
improved through a new perspective (collaborative filtering).
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8 CONCLUSION
Literature has shown that a reporter is a relevant feature of ML
models when predicting bug-fixing time. CF provides recommenda-
tions focusing on the user. Predicting bug-fixing time can be seen
as a recommender system, which recommends those bugs that can
be resolved quickly. The aim of this paper was to answer the follow-
ing research question: How does a collaborative filtering approach
perform in predicting bug-fixing time compared to the supervised
machine learning approaches? In order to answer this question, an
experiment was carried out in which the recurrent ML approach re-
ported in literature was selected and used to classify reported bugs
as fast or slow, according to the characteristics of the bug report.
CF algorithms were then selected to recommend whether the bug
would be fixed quickly or slowly in line with their characteristics
and the similarity between the person who opened the bug, similar
to how a movie recommender system works.

The results of this study show that the collaborative filtering ap-
proach is viable in predicting bug-fixing time. The algorithms used
in this experiment outperformed the supervised ML approach. The
SVD, KNNBaseline and SVD++ algorithms produced an F-measure
of 74%, whilst the most successful ML algorithm, Random Forest,
achieved an F-measure of 66% F-measure. In collaborative filtering,
only six features are required to achieve a greater performance,
compared to ten features in supervised ML. In applying collabora-
tive filtering, one can therefore predict bug-fixing time with less
data initially obtained from bug reports during triage.

In our experiment, we use the default configurations of Surprise
Library. In this way, the similarity metric is the Mean Squared
Difference (MSD). For future works, it is interesting to verify the
performance of the techniques using other metrics like cosine simi-
larity and Pearson.

The approach presented in this study does not necessarily re-
quire the use of the algorithms presented in this paper. Despite
we use a specific library to run the collaborative filtering, we un-
derstand that other techniques can be apply. Other algorithms can
be applied such as several deep learning algorithms which have
shown great promise in predicting bug-fixing time. In the future,
we believe it would be beneficial to perform a study using deep
learning algorithms in a collaborative filtering approach to predict
bug-fixing time. It would also be interesting to apply the proposed
approach to a proprietary project that contained information about
the person who opened the bug, such as position in company, time
on the project, time in the company and other characteristics that
would improve the collaborative filtering approach. A hybrid model
using collaborative and content based filtering could also be tested
to try and improve the model. The type of bug affects bug-fixing
time as well, eg security bugs tend to be given higher priority and
the time to fix security bugs is shorter, but also less variable and
thus more predictable (ie you have to fix them). The type of bug
should be taken into account in future work.
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