
What are the Top Used Modules in Python Open-Source
Projects?

Luana Gribel Ito
National Institute for

Telecommunications - Inatel
Santa Rita do Sapucaí, Brazil

luanagribel@gec.inatel.br

Mariana Helena Inês Moreira
National Institute for

Telecommunications - Inatel
Santa Rita do Sapucaí, Brazil
marianahelena@gec.inatel.br

Sarah Brandão Souza
National Institute for

Telecommunications - Inatel
Santa Rita do Sapucaí, Brazil
sarahbrandao@gec.inatel.br

Sinara Pimenta Medeiros
National Institute for

Telecommunications - Inatel
Santa Rita do Sapucaí, Brazil
sinaramedeiros@gec.inatel.br

ABSTRACT
When a team of developers are creating new software, they most
likely will use libraries of code that can assist in a given required
feature. One source to find these libraries can be popular question-
answer websites, blogs, personal web pages and the usage of tools
that can automatically suggest libraries. Popularity might be one
criterion that developers can use when choosing a library. In this
work, we performed an empirical evaluation through mining Python
projects hosted in GitHub to identify the most popular used modules.
We selected 129 projects based on specific criteria, one of them
being the number of stars that reflects their popularity. To automate
the data extraction process, we developed the PySniffer, an open-
source tool that performs a static code analysis in Python scripts,
checking which modules from both the standard library and external
modules are used in a project. Our tool also has a front-end that
can display the data more friendly with statistical information. As
a result, we generated a list with the top used modules in Python
projects hosted in GitHub, serving as complementary information
alongside the most popular libraries informed in personal blogs and
websites.

KEYWORDS
GitHub, Mining Software Repositories, Python, Static Code Analy-
sis

1 INTRODUCTION
Python is a high-level, general-purpose, multi-paradigm program-
ming language released in 1991. It is one of the fastest-growing
languages, quickly catching up with other established languages in
the market such as C, C++ and Java.

In part, this is because Python is a simple language with a fast
learning curve and an emphasis on readability. In addition, Python
is the preferred language used in fields such as data science and
machine learning, and therefore, should keep this language among
the most popular ones for the following years [1].

Python is an open-source language that attracted a large com-
munity of adept developers. In this way, the community itself can
contribute to the evolution of the language by creating scripts that

perform different tasks. These are called modules and together they
form a package [2–4].

Searching for libraries to reuse is a common action performed by
developers [5], and popularity can be one criterion for choosing a
library and how to use it [6, 7]. As for the popularity, there is a lot
of information on the internet about modules created by third parties
and those part of Python’s standard library. It is common for blogs
and other websites to write about which modules are the most used,
the most popular, the fastest, and so forth. However, these might lack
work investigating these modules’ presence more rigorously, such
as mining software repositories to validate their presence.

We conducted a study to investigate the most used modules in
Python open-source software system hosted in GitHub to overcome
this. To reach this goal, we developed a tool named PySniffer that can
analyze open-source repositories hosted on GitHub and extract the
usage of the module. Afterwards, we can validate and compare the
obtained data with the grey literature. The base chosen was GitHub
because it is one of the most popular hosting platforms for source
code and files. There were approximately 2,427,136 repositories
with Python scripts on GitHub until writing this paper.

PySniffer can perform static analysis of Python code and verify
all the imports, generating a list of external modules and another list
of modules from the standard library present in the repositories with
Python scripts best ranked on GitHub, using the stars as criteria [8].
Therefore, we do not only rely on data provided by package man-
agers but instead perform a code inspection to validate the presence
of the module. In addition, the tool also has a front-end that gen-
erates graphics to ease the understanding of the results and allows
the user to compare his project to check if the libraries used by him
are present in this generated list. Therefore, the list generated by
PySniffer can also be seen as a reference list.

From our results, we found 1902 modules, 89% of them exter-
nal. It was observed that ‘os’, ‘sys’ and ‘re’ modules from Python
standard library were the most used packages. But analyzing only
the results of packages implemented by third parties, ‘setuptools’,
‘requests’ and ‘pytest’ were the most used in the selected projects.

The remainder of this work is organized as follows. Section 2
explains what Python Modules are and how they are imported into
Python files. Section 3 discusses the concept of Abstract Syntax
Tree (AST) and how the AST module operates since it is the core

Phyllipe Lima
Federal University of Itajubá - UNIFE

Itajubá, Brazil
phyllipe@unifei.edu.br

https://orcid.org/0000-0002-8358-4405

XIII Computer on the Beach
5 a 7 de Maio de 2022, Itajaí, SC, Brasil Ito et al.

of the PySniffer tool. Section 4 brings the research method adopted.
Section 5 presents the PySniffer tool in details. Section 6 approaches
the exploratory data analysis and discussion. Section 7 brings a
selection of related works. Finally, Section 8 contains the conclusion
of this study and suggestions for future work.

2 PYTHON MODULES
Modules are the base of Python language structure, but their concept
can change depending on the author. Some of them use the term
“Module” just for the programs that are imported to use in another
file, like the standard and the third-party libraries. But according to
the official documentation1, “Module” is a file that has functions
and classes definitions and Python executable instructions, whose
name is the Module name plus suffix .py. In other words, every
script with .py extension can be a Module. The documentation also
exposes that Modules can import another Modules and usually the
import declaration is made at the beginning of the program [9].

The idea of this modular design is sharing the complex tasks
in small parts in order to make easier the system organization, to
help in the reuse of codes and maintenance, allow the implementa-
tion of shared services and data, reduce the collision of names and
optimize developing and debugging [2, 3, 9].The Python standard
library brings together a considerable number of modules that offer a
wide variety of resources that facilitate the code develop. Besides it,
there are several other packages available for installation on Python
Package Index, which can be installed using the following command:

python -m pip install SomePackage

All modules expend some memory, this way, is it recommended
to install just what is needed [9]. Usually, developers use a tool
that will be responsible for the management of these modules. In
this context, modules are also known as dependencies. Bellow we
describe three Python package/dependencies managers commonly
used by developers:

• Pip2: A package manager that allows the installation of
Python packages and uses the Requirements file to man-
age dependencies. This files uses a structure based on “key”
“value” pairs, where the “key” is the dependency, and the
“value” is the version. Following we list examples of this file:

Requirements without Version Specifiers
nose
beautifulsoup4

Requirements with Version Specifiers
docopt == 0.6.1
keyring >= 4.1.1

Refer to other requirements files
-r other-requirements.txt

1https://docs.python.org/3/
2https://pip.pypa.io/en/stable/

• Pipenv3: it’s a production tool that includes packaging re-
sources, allowing the creation of a virtual environment for
the project and the management of dependencies through
the Pipfile file, which uses the structure shown below:

[packages]
requests = "*"
[dev-packages]
pytest = "*"

• Poetry4: it’s a tool to manage Python dependencies. This
task is done using a file named pyproject.toml, this file fol-
lows this structure:

[tool.poetry.dependencies]
python = "*"
[tool.poetry.dev-dependencies]
pytest = "3.4"

To use a module component regarding of being a standard re-
source, own resource or a resource that has been installed, it must
be imported. There are three ways to accomplish this [3]:

(1) Importing the module directly:
import moduleName

To access a module’s attribute, use the structure:
moduleName.attributeName.

(2) Import a specific attribute from a module:
from moduleName import attributeName

(3) Import all attributes from a module:
from moduleName import *

Using this strategy, all the attributes are imported, except
those strating with the underscore character (_). This mode,
however, is not recommended since name collisions can
occur.

If we try to execute a Python file, that uses external modules, with-
out previously installing them the code execution returns Module-
NotFoundError and displays the name of the first component
that could not be found. However, if any resource is installed but not
used, the system does not point out this information. Files created
by dependencies managers, such as Requirements, do not allow
to infer which modules are actually being used, once they have the
information of installed packages. To get this information, we can
perform a static code analysis on the project to verify all the im-
ported modules. Instead of performing a pure textual analysis, an
Abstract Syntax Trees can be used.

However, as explained earlier, all Python files are modules. This
way, the isolate analysis of import declaration does not allow us to
determine if the imported resource is a custom developer script, a
module from the standard library or from a third-party library. To
know which is the component origin, we need further exploration.

3https://pipenv.pypa.io/en/latest/
4https://python-poetry.org/

38

https://docs.python.org/3/
https://pip.pypa.io/en/stable/
https://pipenv.pypa.io/en/latest/
https://python-poetry.org/

XIII Computer on the Beach
5 a 7 de Maio de 2022, Itajaí, SC, Brasil

3 ABSTRACT SYNTAX TREE
An Abstract Syntax Tree (AST) is a syntactical structure represented
by a tree. It is used to interpret the source code instructions of a given
programming language. Each node in this tree refers to constructions
present in the source. For instance, an import instruction will be
a node in the tree, just as methods, members, and so forth. The
tree also presents the relationship between the nodes through the
edges. For instance, a conditional block (if/else statement) has a
node that connects to other nodes representing the statements inside
the conditional block.

ASTs can improve in the process of syntactically comprehending
a source code. Furthermore, it can be used to build software engi-
neering tools that perform static code analysis, such as [10, 11], to
track the execution flow of a program and modify the structure of a
source code prior to its execution. Some previous study shows that
building an AST can aid in software evolution [12] and teach data
structure and algorithms [13].

1 tree = ast.parse(contents)
2 for node in ast.walk(tree):
3 if isinstance(node, ast.Import):
4 for subnode in node.names:
5 raw_imports.add(subnode.name)
6 elif isinstance(node, ast.ImportFrom):
7 raw_imports.add(node.module)

Figure 1: Python code from pipreqs package

Since this work is focused on the Python programming language,
we used the astmodule 5 from the standard library. This module has
methods that help build an AST and traverse the nodes searching for
information such as “imports from a .py file”, as shown in Figure 1.
To also obtain the used libraries in a Python project, it was used
the pipreqs package 6, which was one of the bases for the tool
PySniffer, further explained in Section 5

4 RESEARCH DESIGN
This section describes the research design to reach our main goal, i.e.,
investigate the top used modules in Python open-source projects. We
begin presenting the steps we carried out, followed by the criteria we
used to select the projects. We build our research design following
the work of [14].

4.1 Research Method
• Step # 1 - Project Selection:

The first step is to determine what projects hosted on GitHub
we will use as our sample. Since we are interested in finding
the most popular modules, we will also look for popular
Python projects. Among other criteria that we will present
in the following subsection, we used the GitHub stars [8] to
rank these projects.

• Step # 2: Develop a tool to extract the data:
We need to develop a tool that scan Python projects and
extract, for every .py file, what are the modules that were

5https://docs.python.org/3/library/ast.html
6https://pypi.org/project/pipreqs/

imported. For this, we developed the PySniffer. This tool
also has a front-end that eases displaying the most popular
modules found and allows potential users to compare them
with those found in their projects.

• Step # 3: Data Collection
With the projects selected and the PySniffer ready, we exe-
cute the tool. It will clone all projects, scan every .py file,
extract the modules imported, and generate a report in JSON
format.

• Step # 4: Exploratory Data Analysis and Discussion
With our data collected, we will perform an analysis of
the most used modules and discuss their domain and fea-
tures. Therefore, we carry both a quantitative and qualitative
analysis in our exploratory analysis.

4.2 Projects Selection
To generate our data, we selected open-source projects hosted on
GitHub. We were able to obtain a sample of 129 projects. This
manual selection of projects was defined based on the following list
of criteria:

• Uses Python 3 language;
• More than 10 thousand stars;
• READ.ME mostly written in English;
• It is not just a collection of Python language examples or

teaching scripts, which includes course materials and books;
• Not archived;
• Not just a repository of links or lists or text documents;
• Not a coding font or font family or similar repository;
• Not the repository of the language itself (CPython);
• No syntax or indentation errors in .py files.

In addition, there is a restriction regarding the search for modules.
If the developer uses the module name in some file or folder, the
module is disregarded by the pipreqs tool because the name of the
modules themselves are the names of the .py scripts. Thus, it is not
a good Python programming practice to use the name of the external
module or the default library as the name of files and folders. In this
scenario, the result presented by PySniffer will have inconsistencies.

In short, from the 129 selected projects, we obtained repositories
from several different domains such as desktop/web/mobile appli-
cations, tools, frameworks, libraries, packages, command-line in-
terfaces, emulators, plugins, terminals, engines, services, platforms,
research, academic, personal or commercial projects were selected.

5 PYSNIFFER
In this section we present the construction of the PySniffer7 tool that
we developed to scan Python software repositories hosted in GitHub
and extract the modules usage data. The tool also clones the list
of the selected repository. We begin presenting the tool itself, that
works as a back-end, that is able to generate a report file with the
modules found. Afterwards we present the front-end web application
developed to display these modules, bringing these results closer to a
developer interested in monitoring modules used in his own system.

7https://github.com/SinaraPimenta/PySniffer

39

https://docs.python.org/3/library/ast.html
https://pypi.org/project/pipreqs/
https://github.com/SinaraPimenta/PySniffer

XIII Computer on the Beach
5 a 7 de Maio de 2022, Itajaí, SC, Brasil Ito et al.

5.1 PySniffer Flow of Execution
We will describe the tool presenting both the structure and the flow
of execution. Figure 2 present the overview of how PySniffer, going
from cloning GitHub repositories to generating the results.

Figure 2: PySniffer General Flow

PySniffer is executed via command line and has has three opera-
tion mode, as shown in Figure 3. The download_repos mode is
responsible for downloading repositories from GitHub. The mode
analyzing_repos obtains which modules are the most used
from the downloaded projects. And the analyzing_my_project
extract the modules used in a specific GitHub repository and com-
pares with the list generated from the previous mode. The goal of this
mode is that a user can compare his own project with the reference
list.

Figure 3: PySniffer Operation Mode

The first step is to clone the repositories, using the following
command:

python cmd/cli/main.py download_repos

A script will be executed to clone the projects and save them in
a specific folder for future analysis. At the time of this writing, the
list of projects is fixed and chosen according to criteria detailed in
Subsection 4.2.

Afterwards we should execute the command:

python cmd/cli/main.py analyzing_repos

PySniffer will begin scanning the projects downloaded to ob-
tain information about module usage. It counts the total number of
Python Scripts in each project and executes the pipreqs library
in all projects. This library is responsible for the automatic gener-
ation of the Requirements file for each project. This makes it
possible to determine which libraries are used in the .py scripts
in each one of these projects. Besides, the pipreqs has been
manipulated to also obtain the most used libraries from Python
itself, so the project’s data analysis covers even a larger area of
research. In addition, a parameter was changed to ignore errors of
type UnicodeDecodeError.

So far, PySniffer has collected and prepared all the necessary data.
The next step is to read the modules and count them, in order to
extract useful and concrete information regarding their usage. For
that, PySniffer analyzes the files that were generated previously and
obtains the libraries, making a new list containing all this informa-
tion.

After the previous calculations are performed, a report in JSON
format is generated with the modules usage information ranked, with
most used module on top. The tool also generates a graphic with the
10 most used modules from the standard library and another with
the 10 most used external modules. Thus, at this point, PySniffer has
performed the complete standard operation and generated a report,
and graphics, with the top used modules from best ranked GitHub
Python repositories. This report can now be used as a reference list.

As mentioned, PySniffer has a third operation mode that lets
users compare these top used modules, with the ones found in his
own project. Currently, PySniffer requires that this project is also
hosted in GitHub. To run this command the user needs to pass, as a
parameter, the URL where the project to compared is hosted. This
way, the same functionalities performed in the second operation
mode will be carried out. However, only this specific project will be
used instead. Afterwards, the comparison process begins. This step
consists in verifying if the modules found in the repository provided
by the user belong to the generated list in the analysis of GitHub
repositories, that is, the library is part of the group of the most
ones used by Python developers. Therefore, to run this operation
mode, PySniffer must have already generated the reference list, i.e.,
executed in the second operation mode.

This comparison is very interesting, because the developer can
verify and validate if the used packages in his project might be the
best for a given task. For instance, if a project uses the Jasmine test
framework, but it does not appear in the most used modules list, this
may indicate that the user could have used a better framework. This is
assuming that the most popular modules are those that exercise their
functions in a better way or are more complete. The final decision
is up to the team of developers and only they know the reason for
choosing a specific module to use. However, the reference list can
be used as a good starting point. The generated result also allows
another inferences depending on the focus of the user investigation.

Afterwards, two lists will be generated from this operation mode.
One will contain the modules that also belong to the reference list,
i.e., the one obtained in the analysing-repos mode, and a
second list with the modules that were not found in that reference
list.

40

XIII Computer on the Beach
5 a 7 de Maio de 2022, Itajaí, SC, Brasil

5.2 PySniffer Front-End Web Application
To further ease the analysis process, bring the results closer to an
end-user, and provide an appealing graphical user interface (GUI),
PySniffer also has a front-end web application. This allows users to
access the platform and obtain statistical information for the projects
in a more friendly way when compared to numbers on tables.

The web application is responsible for reading data from the
previously generated JSON files (described in Subsection 5.1) and
displaying them in a more friendly and intuitive way for the user,
with lists and graphics that aid in a better understanding and anal-
ysis of the results. It also allows easier comparison of the modules
extracted in a given repository, with the reference lists of top used
modules. In addition, the web application has a search bar and allows
filtering the result by the module’s origin (standard library, PyPi or
any of these), as shown in Figure 4. The application is available in:
https://pysnifferweb.herokuapp.com.

The web application also has details about the PySniffer usage,
links for the source code and other relevant information of the overall
project. It is also possible to download the list with all modules found
and their frequency in the projects, or generate the list filtering by
the module’s origin. The download file is of CSV format.

Figure 4: Web Application - Searching in List of Found Modules

Finally, another feature offered by the web application is located
in the “Statistics” tab. It contains the results obtained in this study
and is displayed in Figure 6. The data presented on this web page
are further explained in the Section 6.

The web application source code is available in our GitHub repos-
itory8.

8https://github.com/Mariana-Helena/PySniffer-Web-Application

Figure 5: Output of PySniffer for a custom Project Statistics

5.3 Example Usage for Custom Project
As an example usage of comparing the modules list found in a cus-
tom project with the reference list generated by PySnnifer we select
the open-source project Smart Windows 9 for analysis. The main
goal here is to check if the libraries used in the custom project are
among those collected from popular projects from GitHub. Running
PySniffer and passing as parameter the URL to the custom repository
we have the output on Figure 5.

We observe that all modules used in the project Smart Windows
were also used by popular Python projects. For instance, the Flask
framework appears in the list of used libraries, confirming that the
user has chosen a popular tool and, probably, will better meet its
requirements in optimal way.

6 EXPLORATORY DATA ANALYSIS AND
DISCUSSION

We divide our data analysis into two parts. First, we expose the
top modules we found in GitHub repositories, separating between
standard and third-party modules. Then, in our second analysis,
we perform a discussion on the top modules, commenting on their
responsibilities and relevant features.

The results presented below refer to the 129 repositories10 chosen
as the sample for this work.

6.1 Top Used Modules
Currently there are about 338215 external modules available in
PyPI11 and 1785 modules from the standard library12.

From the 129 analyzed repositories, we obtained 57201 Python
files. After running the PySniffer, 1902 modules were obtained, being
1701 external modules and 201 modules from the standard library.
The number of external modules used represent approximately 89%
of the used libraries, developed by third party groups to implement
features that became necessary to aid developers. We present in

9https://github.com/SinaraPimenta/Projeto_C115_Smart_Windows
10Available in the repository: https://github.com/SinaraPimenta/PySniffer
11https://pypi.org/
12https://github.com/bndr/pipreqs/blob/master/pipreqs/stdlib

41

https://pysnifferweb.herokuapp.com
https://github.com/SinaraPimenta/Projeto_C115_Smart_Windows
https://github.com/SinaraPimenta/PySniffer
https://pypi.org/
https://github.com/bndr/pipreqs/blob/master/pipreqs/stdlib

XIII Computer on the Beach
5 a 7 de Maio de 2022, Itajaí, SC, Brasil Ito et al.

Figure 6: Web Application - Statistics Tab

Figure 7 the top 10 third party modules, and in Table 1 we present
further details about them.

Figure 7: External Modules

For the modules that belong to the standard library, we present in
Figure 8 the top 10 found. In Table 2 we further detail them.

6.2 Qualitative Analysis
Now that we have the list of the top used modules in Python open-
source projects, we can discuss their responsibilities. In other words,
we can discuss the top features required in these selected projects
that we extracted our data. We also highlight some differences from
the data found in blogs for complementary purposes. The list of used
blogs is available in the PySniffer repository.

Table 1: External Modules

Module Description
setuptools Designed to make packaging Python projects easier.
requests Requests allows you to send HTTP/1.1 requests extremely easily
pytest Framework makes it easy to write small tests.
numpy Is the fundamental package for scientific computing.
pillow Provides file format support and image processing capabilities.
scipy Is open-source software for mathematics, science and engineering.
pyyaml Is a YAML parser and emitter for Python.
matplotlib Create static, animated, and interactive visualizations in Python
six Python 2 and 3 compatibility library
pandas Open source data analysis and manipulation tool.

Table 2: Standard Library Modules

Module Description
os Miscellaneous operating system interfaces.
sys System-specific parameters and functions.
re Regular expression operations.
time Time access and conversions.
subprocess Subprocess management.
collections Container datatypes.
shutil High-level file operations.
itertools Functions creating iterators for efficient looping.
functools Higher-order functions and operations on callable objects.
json JSON encoder and decoder.

We present a list with different domains and responsibilities and
what modules contribute to it.

• Testing Framework: unittest module was the most used,
being present in 80 projects, followed by pytest, present
in 61 projects. In third place, we have the doctestwith 16

42

XIII Computer on the Beach
5 a 7 de Maio de 2022, Itajaí, SC, Brasil

Figure 8: Standard Modules

projects. Comparing with the grey literature, the information
diverges. In some blogs, the framework robot is cited as
the most used, followed by pytest and, in third place,
unittest. Other frameworks considered popular did not
appear in the final result obtained by PySniffer. T

• Web Scraping Tools: The urllib module was present
in 80 projects, followed by requests (62 projects) and
beautifulsoup4 (19 projects). This finding slightly dif-
fers from the information on some blogs and websites. In
these, the request is considered the most popular, fol-
lowed by lxml and, finally the beautifulsoup4. Al-
though lxml is not present in the top 3 modules found by
PySniffer, it was present in 14 projects, a significant number
considering that the most popular projects on GitHub were
selected.

• Data Science and Machine Learning: The numpy module
was found in 58 projects, followed by scipy (40 projects)
and pandas (27 projects). These are well-known libraries,
and several works in the literature discuss them [1].

• Data visualization: matplotlib module was the most
used, being present in 32 projects, followed by seaborn
used in 6 projects, and plotly in 5 projects. In one of the
research sources, the disclosed data corroborate the result
found by the developed tool.

• APIs Frameworks to build API: The flask module was
found in 20 projects, being the most used, followed by
django (6 projects) and fastapi (1 project). These data
differs slightly from the information on some blogs and
websites. In these, django is considered the most popular,
followed by flask and then falcon.

• Cloud: The boto3 was the top used, found in 16 projects,
followed by azure_storage (7 projects) and pyicloud
(1 project). For this area of study, we could not find infor-
mation in other sources indicating which module was con-
sidered the most popular. However, the boto3 is a module
geared towards development with Amazon Web Services

(AWS), one of the most popular cloud services. This way,
the result found servers as support to the popularity of AWS.

• Database: The SQLAlchemy module, found in 13 projects,
was the most used, followed by pymongo (9 projects) and
sqlparse (5 projects). These data differs from the in-
formation obtained from the literature. In these, the most
popular modules are mysql.connector, sqlite3 and
psycopg2.

• MQTT: The paho-mqtt module was the only one found
in the category. In gray literature, hbmqtt and gmqtt
modules appears as options to work with mqtt, but paho is
predominant, which confirms the obtained results.

We extracted the top used modules and presented their responsi-
bilities, creating a discussion of the top features required and used
by popular open-source Python projects hosted in GitHub. From
this discussion, it is clear that unit testing is a very popular feature
used nowadays to measure software quality. Furthermore, data visu-
alization is also very popular among Python projects, given that this
language is known to be strong in this field, as opposed to Java or
C#.

We obtained results from an empirical study conducted through
mining software repositories. The goal was to provide a reference
list of top used modules in popular Python projects and complement
lists found in blogs and personal websites. Developers, however,
should decide which library or module they will use based on their
requirements and needs. Our work can aid this process not as a final
decision but as another variable to consider.

7 RELATED WORK
In this section, we present the work of other researchers that used
AST to perform static code analysis and mined software reposito-
ries to study the usage of both external and standard libraries in
open-source software. Even though we are interested in Python in
this work, we present research carried out in other programming
languages to generalize the research.

The work of [15] proposes the APIScanner, a tool developed to
search and list deprecated APIs (Application Programming Interface)
in Python libraries and, consequently, unused. They saw a need to
bring this kind of technology to the Python language as it was found
just for static programming languages like Java. This way, a team
developing a Python project could know that the API they are using
is deprecated in the beginning or middle of the project’s course, not
just when finished. This tool uses Abstract Syntax Tree (ASTs) and
Decorators. To validate their work, the authors applied their approach
to six famous Python libraries: NumPy, Matplotlib, Pandas, Scikit-
learn, Scipy and Seaborn. As a result, the tool detected 838 out of
871 elements in the six analyzed libraries. The use of ApiScanner
helps developers save time from analyzing documentation to find out
whether or not API “X” is obsolete. Compared with our work, we
do not investigate the presence of deprecated libraries, we instead
focus on the usage of such libraries and the most popular ones.

The work of [16] proposes MigrationMiner, a tool that detects
code migration that has been carried out between third-party Java
libraries in projects hosted in GitHub. A simple approach is to inspect
changes in the pom file and report what library was replaced. It can
also search how the methods calls were migrated from the retired

43

XIII Computer on the Beach
5 a 7 de Maio de 2022, Itajaí, SC, Brasil Ito et al.

library to the new library. This tool was developed since library
migration is a very tedious process, and developers need to identify
and understand all their particularities, which can be time-consuming.
The tool searches for patterns present on library migration and can
aid developers by suggesting the changes while they refactor the
code to a new library.

Regarding the Java ecosystem, several frameworks and libraries
use a metadata-based approach exposing their functionalities in the
form of code annotations. The work of [14, 17] performed static
code analysis on GitHub projects to measure how code annotations
were present. It reported that the majority of external libraries found
was related to testing (JUnit), object-relational mapping (JPA) and
web controllers (Spring).

Finally, the work of [18] investigates an approach to identify ex-
perts in specific libraries or frameworks based on their contributions
to GitHub projects. They are targeting experts in 3 JavaScript li-
braries: react, node-mongodb and socket.io. To reach their
goals, they combine the areas of mining software repositories and
machine learning. As a result, they were able to recommend dozens
of GitHub users with robust evidence of being experts inreact.

8 CONCLUSION
This paper conducted an empirical study to obtain the top used
modules in popular Python projects hosted in GitHub. Several blogs
and personal websites contain a list of popular libraries, and the list
that we obtained empirically can complement this data found on
the web. Empirically obtained lists might also better reflect what
developers are using to build their software, and we can discuss what
features are being the most requested.

The first step was to select popular projects hosted in GitHub,
which yielded a list of 129 projects unfolding in 57201 “.py” files
to obtain this list of used modules. Then, to automate the extraction
process, we developed an open-source tool called PySniffer. The tool
can download the selected projects, extract the top used modules,
and compare them with modules obtained from another specific
repository. PySniffer can also generate a bar chart with the ten most
used modules both from the standard library and third-party libraries.
Finally, we developed a web application that brings these results
closer to end-users through GUI and statistics information.

From our discussion, we saw that one of the most used features
was related to testing, which is a practice that has become widespread
in the software engineering community, and we validated this from
our empirical finding. Other popular libraries that we found are
related to web scraping and data science. With our list and tools
publicly available, other practitioners and researchers can use them
to analyze their projects.

We have the selected projects and the base chosen as a threat to our
work. We considered the top 129 projects that matched our criteria.
Even though we presented these criteria in detail to ease reproducing
this list, there is still room to generate a list slightly different from
ours. Therefore, the used modules might differ. Furthermore, we
only considered projects hosted on GitHub, and projects hosted on
another base may present a different profile.

For future work, we would like to automate and customize the
analysis by domain, i.e., choose projects related to web development,
then projects of data analysis, then tools, and so forth. This way

might better understand developers’ needs depending on what type
of systems they develop. With this functionality, PySniffer might
also be able to offer tips on the most used libraries for each area. In
addition, it is proposed to improve the web application to execute the
tool or to request data directly from an API. Another improvement
is the automation of the collection and selection of Open-Source
repositories from GitHub, focusing on keeping the data up to date
and allowing users to pass in custom criteria.

REFERENCES
[1] Sebastian Raschka, Joshua Patterson, and Corey Nolet. Machine learning in

python: Main developments and technology trends in data science, machine
learning, and artificial intelligence. Information, 11(4), 2020. ISSN 2078-2489.
doi: 10.3390/info11040193. URL https://www.mdpi.com/2078-2489/11/4/193.

[2] Sandeep Nagar. Introduction to Python for Engineers and Scientists: Open Source
Solutions for Numerical Computation. Apress, 1st edition, 2018. ISBN 978-1-
4842-3203-3, 978-1-4842-3204-0.

[3] Maurice J. Thompson. Python Programming For Beginners - Learn The Basics
Of Python In 7 Days! (n.p.), (n.p.) edition, 2018. ISBN 1980501114, 978-
1980501114.

[4] KR Srinath. Python–the fastest growing programming language. International
Research Journal of Engineering and Technology (IRJET), 4(12):354–357, 2017.

[5] Phuong T. Nguyen, Juri Di Rocco, Davide Di Ruscio, and Massimiliano Di Penta.
Crossrec: Supporting software developers by recommending third-party libraries.
Journal of Systems and Software, 161:110460, 2020. ISSN 0164-1212. doi:
https://doi.org/10.1016/j.jss.2019.110460.

[6] Laura Moreno, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and
Andrian Marcus. How can i use this method? In 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering, volume 1, pages 880–890,
2015. doi: 10.1109/ICSE.2015.98.

[7] Riccardo Rubei, Claudio Di Sipio, Phuong T. Nguyen, Juri Di Rocco, and Davide
Di Ruscio. Postfinder: Mining stack overflow posts to support software developers.
Information and Software Technology, 127:106367, 2020. ISSN 0950-5849. doi:
https://doi.org/10.1016/j.infsof.2020.106367.

[8] Hudson Borges and Marco Tulio Valente. What’s in a github star? understanding
repository starring practices in a social coding platform. Journal of Systems
and Software, 146:112–129, 2018. ISSN 0164-1212. doi: https://doi.org/10.
1016/j.jss.2018.09.016. URL https://www.sciencedirect.com/science/article/pii/
S0164121218301961.

[9] Mark Lutz. Learning Python. O’Reilly Media, Inc., 4th edition, 2009. ISBN
978-0-596-15806-4.

[10] Phyllipe Lima, Eduardo Guerra, and Paulo Meirelles. Annotation sniffer: a tool to
extract code annotations metrics. Journal of Open Source Software, 5(47):1960,
2020. doi: 10.21105/joss.01960. URL https://doi.org/10.21105/joss.01960.

[11] Maurício Aniche. Java code metrics calculator (CK), 2015. Available in
https://github.com/mauricioaniche/ck/.

[12] I. Neamtiu, J. S. Foster, and M. Hicks. Proceedings of the 2005 international work-
shop on mining software repositories. In Understanding source code evolution
using abstract syntax tree matching, pages 1–5, 2005.

[13] Vartika Agrahari and Sridhar Chimalakonda. Ast[ar] – towards using augmented
reality and abstract syntax trees for teaching data structures to novice programmers.
In 2020 IEEE 20th International Conference on Advanced Learning Technologies
(ICALT), pages 311–315, 2020. doi: 10.1109/ICALT49669.2020.00100.

[14] Phyllipe Lima, Eduardo Guerra, Paulo Meirelles, Lucas Kanashiro, Hélio Silva,
and Fábio Silveira. A metrics suite for code annotation assessment. Journal
of Systems and Software, 137:163 – 183, 2018. ISSN 0164-1212. doi: https:
//doi.org/10.1016/j.jss.2017.11.024. URL http://www.sciencedirect.com/science/
article/pii/S016412121730273X.

[15] Aparna Vadlamani, Rishitha Kalicheti, and Sridhar Chimalakonda. Apiscan-
ner - towards automated detection of deprecated apis in python libraries. In
2021 IEEE/ACM 43rd International Conference on Software Engineering: Com-
panion Proceedings(ICSE-Companion), pages 5–8, 2021. doi: 10.1109/ICSE-
Companion52605.2021.00022.

[16] Hussein Alrubaye, Mohamed Wiem Mkaouer, and Ali Ouni. Migrationminer: An
automated detection tool of third-party java library migration at the method level.
In 2019 IEEE International Conference on Software Maintenance and Evolution
(ICSME), pages 414–417, 2019. doi: 10.1109/ICSME.2019.00072.

[17] Phyllipe Lima. Assessing code annotations usage in software projects, 2021-09-16
2021. URL http://urlib.net/ibi/8JMKD3MGP3W34T/45DA8DH.

[18] João Eduardo Montandon, Luciana Lourdes Silva, and Marco Tulio Valente.
Identifying experts in software libraries and frameworks among github users. In
2019 IEEE/ACM 16th International Conference on Mining Software Repositories
(MSR), pages 276–287, 2019. doi: 10.1109/MSR.2019.00054.

44

https://www.mdpi.com/2078-2489/11/4/193
https://www.sciencedirect.com/science/article/pii/S0164121218301961
https://www.sciencedirect.com/science/article/pii/S0164121218301961
https://doi.org/10.21105/joss.01960
http://www.sciencedirect.com/science/article/pii/S016412121730273X
http://www.sciencedirect.com/science/article/pii/S016412121730273X
http://urlib.net/ibi/8JMKD3MGP3W34T/45DA8DH

	Abstract
	1 Introduction
	2 Python Modules
	3 Abstract Syntax Tree
	4 Research Design
	4.1 Research Method
	4.2 Projects Selection

	5 PySniffer
	5.1 PySniffer Flow of Execution
	5.2 PySniffer Front-End Web Application
	5.3 Example Usage for Custom Project

	6 Exploratory Data Analysis and Discussion
	6.1 Top Used Modules
	6.2 Qualitative Analysis

	7 Related Work
	8 Conclusion
	References

