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ABSTRACT
Cervical cancer is a public health problem, where the treatment has
a better chance of success if detected early. This paper explores one
way of to analyze argyrophilic nucleolus organizer regions (AgNOR)
stained slide using deep learning approaches of object detection for
detecting the different categories of nucleus. Our results show that
a balanced dataset between the explored categories was essential,
also that a ResNet-50 as backbone of Fast RCNN shows an AP of
61.8% and 42.5% to detect nucleus and out of focus nucleus.
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1 INTRODUCTION
Cervical cancer, predominantly caused by persistent infection by
some types of Human Papillomavirus (HPV) called oncogenic. It
is characterized by the disordered replication of the organ lining
epithelium, which can invade other structures until it reaches cir-
culation and affect other parts of the body [1]. HPV is the most
common viral infection of the reproductive tract. Two types (16
and 18) cause 70% of cervical cancers and precancerous lesions [2].
This disease prevention can be done in several ways, but it is still
one of the main causes of death from cancer worldwide. Today, it
is the seventh most incident type of cancer, with approximately
570 thousand new cases per year, being the fourth most common
cancer among women [3]. In Brazil, the National Cancer Institute
(2020) [4] estimates that more than 16 thousand new cases will oc-
cur for each year of the 2020-2022, occupying the third position of
incidence in women across the country. Furthermore, the diagnosis
made at an advanced stage is one of the most critical reasons why
cervical cancer maintains high mortality rates all over the world
[5].

Usually, cervical cancer can be tracked early by detecting pre-
cancerous changes, and it can present a favorable prognosis, with
great chances of cure. Currently, the most used screening tests are
cervical cytology (or Pap test), visual inspection with acetic acid
and the HPV test for high-risk types [6]. Depending on the smear

test results, the patient is referred to colonoscopy and a biopsy may
be necessary in more extreme cases for an accurate evaluation of
the lesion. These conventional techniques, although quite reliable,
have low rates of reproducibility and are not so cheap and effective.
Moreover, they present high rates of false negatives. Because of
that, researchers see the need to adopt new cytological techniques
for predictive, reliable, and reproducible analyzes [7].

Thus, an alternative way of investigating cervical samples is
the detection of nucleolus organizer regions (NORs). These are
DNA loops containing genes responsible for the transcription of
ribosomal RNA located in the cell nucleolus. They contain a set of
argyrophilic proteins, selectively stained by silver nitrate, which
can be identified as black dots located throughout the nucleoli area
and called AgNORs [8]. The numbers of AgNOR in interphase are
closely related to cell proliferative activity, since it is the region of
the nucleus where ribosomal RNA’s are synthesized, processed, and
assembled with ribosomal proteins. Therefore, research on these
biological markers has expressed prognostic importance since it
show that malignant cells often have higher numbers of AgNOR
compared to corresponding benign or normal cells [9]. The advan-
tages of the AgNOR technique over other methods of evaluating
cell proliferation are simplicity and economy, since it can be applied
to a material routinely processed, the reagents can be easily found
and have a reduced cost [10]. The biggest disadvantage, although it
presents results with a low probability of error, is the manual eval-
uation. There is some risk of variations caused by the observation
conditions and the great propensity to human errors during the
process. In addition, the technique demands a lot of time, which
also occurs with other types of dyes [11].

To minimize human errors during this diagnostic process, Ma-
chine Learning methods are an adequate alternative to provide
more reliable results and in greater quantity. Within this perspec-
tive, neural networks have been used for more than 25 years to
perform quantitative analyzes on samples of cytological material
[12]. Recently, however, due to the great growth around computer
vision, Deep Learning algorithms have been achieving spectacular

João  Gustavo  Atkinson
Amorim

  joao.atkinson@posgrad.ufsc.br 
Federal  University  of  Santa  Catarina
Florianópolis,  Santa  Catarina,  Brazil

Vinícius  Moreno  Sanches
Federal  University  of  Santa  Catarina
Florianópolis,  Santa  Catarina,  Brazil 
vinicius.moreno.sanches@grad.ufsc.br

André  Victória  Matias
Federal  University  of  Santa  Catarin
Florianópolis,  Santa  Catarina,  Brazi
andre.v.matias@posgrad.ufsc.br

Marco  Antônio  Martins  Cavaco
Federal  University  of  Santa  Catarina
Florianópolis,  Santa  Catarina,  Brazil 

m.cavaco@ufsc.br

Alexandre  Sherlley  Onofre
Federal  University  of  Santa  Catarin
Florianópolis,  Santa  Catarina,  Brazi

alexandre.onofre@ufsc.br

Fabiana  Botelho  Onofre
Federal  University  of  Santa  Catarin
Florianópolis,  Santa  Catarina,  Brazi

fabiana.onofre@ufsc.br

Aldo  Von  Wangenheim
Federal  University  of  Santa  Catarin
Florianópolis,  Santa  Catarina,  Brazi

aldo.vw@ufsc.br

https://orcid.org/0000-0003-3361-6891
https://orcid.org/0000-0003-3361-6891
https://orcid.org/0000-0001-9069-7726
https://orcid.org/0000-0003-0268-0233
https://orcid.org/0000-0002-7185-5909
https://orcid.org/0000-0002-3833-8694
https://orcid.org/0000-0003-4857-5770
https://orcid.org/0000-0003-4532-1417


XIII Computer on the Beach
May 05-07, 2022, Itajaí, SC, Brasil Amorim, et al.

results in the mission of detecting the most varied types of ob-
jects, bringing the possibility of extracting more useful information
from data [13]. For this reason, they can be used to assist in the
identification and classification of nucleolus organizing regions by
cytological analysis [14].

This paper presents the results of applying object detection meth-
ods to silver-stained cytology images (AgNOR technique), using
deep learning methods for computer vision. The main objective
was to detect nuclei and separate them into different categories.

2 RELATEDWORKS
A systematic literature review made in middle 2020 with the objec-
tive of finding what are the current computer-assisted or artificial
intelligence-based approaches in computer vision for the support
of quantitative cytology and diagnosis of cancer in cytological ex-
ams [14]. The studies analyzed was from the beginning of 2016 to
middle of 2020. Based on the analysis of the papers, deep learning
approaches (mostly CNNs) were the most common in these works.
However, classical approaches such as Support Vector Machine,
Random Forest, Artificial Neural Network, super-pixel segmenta-
tion, and others, are still employed in some works.

Due to the various problems encountered with automatic screen-
ing caused by improper staining of cells and overlapping cell images,
a methodology proposed in [15] to deal with the problem in nucleus
segmentation and to suggest classification methods for automatic
screening of cervical cancer. For the segmentation of the nucleus,
it was applied k-means clustering [16] at the pre-processed images.
For the classification, it was used random forest classifier, after
comparing the results obtained in other classification techniques.
Similar works, [17] and [18] were performed, showing the wide
range of projects that seek to apply computational methods to
minimize human error in the process of cancer detection.

In [19] the authors aimed to investigate the diagnostic value
of AgNOR counts in cervical smears and discriminate the degrees
of squamous intraepithelial lesion (SIL). Results demonstrated a
progressive increase in AgNOR counts when the severity of the
lesions increased, mainly in the differentiation between low and
high-grade SIL. In addition, on [20] and [21] they analyzed the
AgNOR count as a marker of malignancy progression. As the count
shows the intensity of cell proliferation, this method can be used in
differentiating between low and high degree of cervical dysplasia, as
well as between lesions with high and low potential for malignant
transformation. The technique presented prognostic value in the
early identification of high-risk cases, as can be seen in [22].

Lastly, in [12], the authors used a pipeline for AgNOR quantifi-
cation, focused on cytology exams using deep learning algorithms
aiming at the early detection of cervical neoplasm. They used a
U-Net with ResNet18 as the backbone to perform the semantic
segmentation. Moreover, with their results on the segmentation
process, the quantity, and area of the NORs were measured. This
gives us some conclusions about how to early detect cancer using
AgNORs. In this work, the best result was a 0.87 of restrict mIoU
and 0.99 of restrict DSC. These results validate the use of semantic
segmentation to measure AgNORs.

3 MATERIAL AND METHODS
3.1 Dataset
The dataset has been built with the Gynecology and Colonoscopy
Outpatient Clinic of the University Hospital Professor Polydoro
Ernani de São Thiago of Federal University of Santa Catarina (HU
UFSC EBSERH). It was built by images from examinations per-
formed on women that had presented cytological alterations in
the gynecological cytology of previous exams. Presented in [12]
a first version of the CCAgT dataset, with a total of 2540 images
from slides of 3 patients. The present work use an intermediate ver-
sion (before second version of CCAgT) containing new categories
for nuclei. This intermediary version has a total of 3905 images
from slides of 5 patients, with a total of 30.912 annotations, and the
distribution of the categories is in the Table 1.

Table 1: Division of annotations by categories

Name Number of annotations %

Nucleus 7509 24
Cluster 15074 49
Satellites 3913 13

Nucleus out of focus 3177 10
Overlapped nuclei 628 2
Non-viable nucleus 611 2

Samples of the dataset can be seen in Fig. 1, being Fig. 1a a sam-
ple of a tile/image with the nuclei categories highlighted by the
boundary boxes. The Fig. 1b shows samples of each nucleus cate-
gory. The colors of the boundary boxes represents each category,
these being:

• Nucleus: in blue, that reefers to an object that contains
NORs and can be analyzed/diagnosed;

• Overlapped nuclei: in red are the nuclei that was over-
lapped, which cannot be analyzed because it is not possible
to identify to which nuclei the NOR belongs;

• Non-viable nucleus: in green are the samples deformed in
a way that does not allow the analysis of it;

• Nucleus out of focus: in yellow the samples that reefers
to a nucleus out of focus, in a way that does not allow its
internal NORs to be identified.

3.2 Models
The Fast Region-based Convolution Network [23] is a network
that, by an image input, and a set of objects, processes the whole
image with max polling layers and several convolutions to achieve
a convolution feature map. Subsequently, this network takes for
each object, is extracted a fixed-length feature vector from the
feature map by a region of interest (RoI) pooling layer. These RoI
Feature Vectors results in two outputs: a soft max probability, and
a bounding-box regression.

With the purpose of detection of the four categories of nucleus,
has been tested different models of Fast R-CNN. The backbone
tested models were ResNet-50 (R50), R50-C4, ResNet-101 (R101)
and ResNeXt-101-32x8d (X101), was listed in table 2 all the models.
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(a) Sample of an image from CCAgT dataset

(b) Samples of each nucleus category from CCAgT dataset

Figure 1: Sample of CCAgT dataset

Model R50-C4 being to an FPN (with ResNet-50) that extracted
features from the final layer of 4th stage convolutions. These models
trained with 1x or 3x of the learning rate schedule, where 1x refers
to approximately 12 COCO epochs. The entire training and testing
process conducted in the Python 3.7.11 with PyTorch [24] at version
1.7.1, and the Detectron2 [25] at version 0.5.

Table 2: The Fast R-CNN tested models

Name Backbone learning rate schedule

R50-1x ResNet-50 1x
R50-1x-C4 ResNet-50-C4 1x
R50-3x-C4 ResNet-50-C4 3x
R101-3x ResNet-101 3x
X101-3x ResNeXt-101-32x8d 3x

In general, the models have similar characteristics, being capable
of to be trained using the same parameters. However, each one
has different depths and quantities of layers along the network.
Therefore, the experiments in the models referred has the purpose
of evaluate different architectures and determine which one has the
best performance when finding nucleus and stained images with
AgNOR.

Besides being state-of-the-art models, they are already wide-
spread in the literature, and no need for further explanations on
the details of each model because this is an application paper. All
models implemented with Detectron2 and PyTorch at background,
and the detailing of each tested architecture explained in [25].

3.3 Metrics
As demonstrated and discussed in [14], one of the most important
factors about the training of the models is to avoid biased results.
Considering it was split the dataset into three different groups
(train, validation, and test set), where each fold:

• Training set is the subject used for training the model;
• Validation set also used during the training of the model,

but its hole is to test the network, besides be used for pa-
rameter tuning;

• Test set is the subject used after the training, to measure
how is the performance of the network. This dataset is the
one used to calculate the metrics described next.

As the goal of this paper is object detection, will be used the Av-
erage Precision (AP) to measure the performance of the networks.
Furthermore, according to [14], the average precision is a conve-
nient metric for object detection. Calculated by the area under the
Precision-Recall curve, it is, compute for each image of the test set
the precision and recall.

As discussed in [26] and in [27], the precision (P) (Equation 1)
is calculated by the ratio between the True Positives (TP) and the
sum of False Positives (FP) and True Positives. While recall (R)
(Equation 2) is the ratio between the True Positives and the sum of
False Negatives (FN) and the True Positives.

𝑃 =

𝑘∑︁
𝑗=1

𝑛 𝑗 𝑗

𝑛𝑖 𝑗 + 𝑛 𝑗 𝑗
, 𝑖 ≠ 𝑗 . (1)

𝑅 =

𝑘∑︁
𝑗=1

𝑛 𝑗 𝑗

𝑛 𝑗𝑖 + 𝑛 𝑗 𝑗
, 𝑖 ≠ 𝑗 . (2)

Where 𝑛𝑥𝑦 represents the number of pixels classified as 𝑥 , and
labeled as 𝑦.

3.4 Experiment setup
The first experiment (E1) was made using all annotations of nuclei
available. Adopting a learning rate (LR) of 5 × 10−4, with weight
decay (WD) of 5 × 10−4, and was performed the training during
1200 iterations (iter).

In the second experiment (E2), it was balanced the number
of annotations for each class in the dataset, looking to analyze
the variation of results by the balance of the nuclei categories of
the dataset. The balance of the dataset randomly done, that is, it
was deleted random annotations of each class. In addition, the
images without any categories also were deleted. The balanced
annotation results in 1534, 425, and 428 annotations of nuclei, out
of focus, overlapped, and non-viable respectively, using the same
hyperparameters as E1.

For the third experiment (E3), was made a hard balance of
the nuclei categories, where reduced the number of annotations
to 706 Nuclei, 632 Out of Focus, 419 Overlapped, and 404 Non-
viable nuclei. Furthermore, increased the iterations number to 2000
without overfitting the model.

The fourth experiment (E4) was performed using the same
setup as E5, but at E4 was applied a pipeline of data augmentation
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Table 3: Experiment setups

Experiment Nº of annotations LR WD iter previous setup
Nucleus Out of focus Overlapped non-viable

E1 5193 2247 435 404 5 × 10−4 5 × 10−4 1000 -
E2 1534 678 425 428 5 × 10−4 5 × 10−4 1000 -
E3 706 632 419 404 5 × 10−4 5 × 10−4 2000 -
E4 706 632 419 404 5 × 10−4 3 × 10−4 2000 -
E5 706 632 419 404 5 × 10−4 3 × 10−4 2000 pre-train the model with 3624 nuclei

samples
E6 2932 2225 - - 5 × 10−4 5 × 10−4 2500 pre-train the model with 1936 nuclei

samples

at the training step. The data augmentation consists in apply ran-
dom brightness, contrast, saturation, rotation, flip, and crop with a
probability of 50%.

At the fifth experiment (E5), was made a transfer learning
technique with the same dataset. So, first was trained the model
for 2000 iterations just for nuclei detection, with 3624 annotations
deleted previously. After this, were transferred the parameters and
the model has trained again with just the balanced dataset created
at E3.

Lastly, the sixth experiment (E6) was trained the model just to
detect nucleus and out-of-focus nucleus, that was the categories of
nuclei that have a higher quantity of annotations. At this experi-
ment, first was adopted the transfer learning with the samples of
nuclei that isn’t at the training set. With that, first, train the model
for just nuclei detection using 2261 nuclei annotations. So, train
the model using 2932 and 2225 annotations of nuclei and nuclei out
of focus, respectively. Performing the train with a learning rate of
5 × 10−4, with a weight decay of 5 × 10−4, and 2500 iterations.

In both experiments, E5 and E6 were pre-trained with a learning
rate of 5×10−4, with a weight decay of 5×10−4, and 2000 iterations.
The summary of experiments setups was in table 3.

4 RESULTS AND DISCUSSION
The first experiment performed followed the details of E1, for the
five models chosen. The table 4 show the results for each model
and category of nucleus. From these results has been determined
the model that best perform for all categories to follow with the
rest of experiments.

The best nucleus and nucleus out of focus detection at E1 has
with the model R101-3x with 61.3% and 28.4% AP respectively.
For overlapped nuclei and non-viable nucleus, all models under-
perform, with the R50-1x being the unique successfully to detect
some overlapped nucleus. The models R50-1x-C4, R50-3x-C4 and
C101-3x does not present relevant results, without AP higher than
2% for the out of focus, overlapped and non-viable nucleus. More-
over, present lower values of AP for nucleus detection.

The R50-1x performs similar to the R101-3x, but with better
results for overlapped nucleus. Because it is a smaller model, had a
similar result to R101-3x, and was able to perform moderately for
the overlapping nuclei, we set it as the ideal model to be tested in
the remaining experiments. For the E1, the R50-1x had an AP of

58.2% and 27.5% for nucleus and nucleus out of focus respectively,
also 2.5% and 2.2% for overlapped and non-viable nucleus. Although
they are not good results for these two categories, understood that
the responsibility of under-perform is the quantity of samples.

Table 4: Results for each models at E1

Model Avg. Precision (%)
Nucleus Out of focus Overlapped non-viable

R50-1x 58.2 27.5 2.5 2.2
R50-1x-C4 10.4 2.0 0 0.1
R50-3x-C4 10.0 1.2 0 0.3
R101-3x 61.3 28.4 0.1 2.8
X101-3x 7.6 0 0 0

Looking for a better set of training for better results, the other
experiments have been conduct and the summarized results can be
seen at table 5. As expected, when conduct a balancing of the sample
as in E2 improve the performance for the out of focus, overlapped
and non-viable nucleus without under-performing for the nucleus
category.

To improve the results in general, the E3, E4 and E5 use the same
samples with a hard balancing seeking the best possible balance
between the categories. The augmentations applied in E4 shows
the model under-perform in comparison with the results of E3. The
E3 results shows an equilibrium between the AP for each category,
but the higher results have been achieved by the E5 showing that
the transfer learning can boost the results for nuclei detection.

Comparing the results between the E3 and E5, shows an im-
provement of 11.8% and 3.2% at AP for out of focus and non-viable
nucleus at E5. For nucleus and overlapped nuclei detection, the
E3 shows higher in 3.6% and 3.9% of AP compared with E5. By
the increases achieved by the E5 is higher than E3, the best model
for multicategory detection of AgNOR nucleus was the model per-
formed at E5. Although lowering the quantity of samples for the
E3, E4 and E5 when compared with E1 and E2, shows that the
higher balance dataset for multicategory detection achieved better
performance.

Furthermore, the results show that a balanced dataset is most
important for this work than the pipeline of data augmentation
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applied for the multicategory nucleus detection. Looking to extract
the better cases of this version of dataset, was performed E6 to
detection of nucleus and out of focus nucleus. At E6, that consists
on a hard balance between in just the two categories, increasing
the number of samples when compared with E3. This approach
shows the highers values of AP compared with all experiments
with an 61.8% and 42.5% AP for nucleus and out of focus nucleus
respectively. The results of E6, is the result of a larger number of
samples with the best experiment found (E5).

Table 5: Results for experiments with Faster RCNN with
ResNet-50 (R50-1x)

Experiment Avg. Precision (%)
Nucleus Out of focus Overlapped non-viable

E2 56 30 9 19
E3 34.6 26.2 16.2 15.8
E4 18.6 9.8 7.8 9.8
E5 31 38 12.3 19
E6 61.8 42.5 - -

5 CONCLUSION
In this work, we evaluated models of deep learning for object detec-
tion at an intermediary version of CCAgT dataset. Tests different
approaches to detect multicategories of nucleus from cervical sam-
ples stained with AgNOR technique. The better model as backbone
for a Fast RCNN is the ResNet-50 in this work, but also the ResNet-
101 can be explored in the future.

Among the experiments performed the use of ResNet-50 as back-
bone, with a balanced dataset and using the rest of nucleus samples
for pre-train the model shows the best performance for multicate-
gorical detection. This experiment got the AP of 31%, 38%, 12.3%
and 19% for nucleus, nucleus out of focus, overlapped nuclei and
non-viable nucleus respectively. Because these are experiments
at intermediate dataset, this work shows exciting results for the
detection of nuclei stained with Agnor, although the model does
not obtain high AP values.

When testing this pipeline of experiment, with just the nucleus
and nucleus out of focus, that have higher quantities of samples,
the AP increases significantly. This points that this pipeline or this
approach can achieve better results when the model receive more
samples. For the two categories, the Fast RCNNwith ResNet-50 have
an AP of 61.8% and 42.5% for nucleus and out of focus respectively.

In future works, we want to test different methods (as seman-
tic segmentation and instance segmentation) to build a complete
pipeline, also test a cascade model with object detection and seman-
tic segmentation to automated slide analysis to help in the early
diagnosis and prognostic of cervical cancer cases. Furthermore, we
want to enlarge the size (in image and patients quantities) of the
dataset, to help improve the model’s assertiveness.
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