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ABSTRACT
This work presents an IoT-based system for remote monitoring
of landslides. The solution uses a Wireless Underground Sensor
Network (WUSN), a cloud computing platform and an App to im-
plement a real time monitoring scheme. The sensor network runs
on Arduino components connected through Wi-Fi modules, and
is responsible to collect soil moisture rates. Then, the collected
data is sent to a cloud computing environment in order to ensure
a robust and secure storage. Moreover, the cloud platform runs
a model for triggering an alarm when a potential landslide is de-
tected. Finally, an App aimed to data visualization in real time and
landslides warning is also presented. The proposed work enables a
real time end to end solution, once it starts with the data collected
by the humidity sensors and finishes with the data visualization by
the citizens, which is very suitable for Smart Cities and Internet
of Things (IoT) environments. The system was evaluated through
real tests and simulated scenarios. The results show the sensor
network accurately measured the soil moisture and the landslides
monitoring model was able to send warnings consistently.
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1 INTRODUCTION
The landslides are an usual phenomenon in Brazil, due to the trop-
ical weather with great amounts of rain, mostly on summer. Be-
sides that, there are several mountainous terrains along the country
which are occupied by legal and illegal buildings. These occupations
increase the risk of landslides, once the original vegetation was
removed from those areas. As shown in [1], in the year of 2020 over
8 million people, whose live in 2.4 million of habitations located in
872 cities, remain in areas with potential risk of landslides.

Despite some states and cities present safety protocols to evac-
uate people in critical rainy scenarios, as can be seen in Rio de
Janeiro’s protocol described in [2], most of these action plans are
not efficient and do not provide public data visualization in real time.
This inefficiency occurs due to the monitoring model of these ap-
proaches, which are based on simple pluviometric rates thresholds,
and do not consider other relevant factors that trigger a landslide,
such the soil humidity. These approaches analyze the weather fore-
cast information and the pluviometric rates collected from rain
sensors spread on different locations around the cities. More to the

point, the data is not collected only from hills and slopes mapped
as risky areas, but the most areas in the cities, which leads to a
ineffective model to predict landslides on as specific location and
to evacuate people as well.

This work address an end to end landslides remote monitoring,
based on an IoT scheme. The proposed solution uses a Wireless
Underground Sensor Network (WUSN) to collect data directly from
the target areas. To this end, humidity sensors are deployed in the
soil of mountainous terrains previously mapped as risky areas by
the local authorities. Then, in order to ensure a robust and secure
storage, the data collected by the underground sensor network is
sent to a cloud computing platform. The cloud computing plat-
form also is responsible for running the model designed to detect
the eminence of a landslide, enabling early warnings for the local
population through an open access App.

The monitoring model proposed in this work is aimed to predict
a landslides in real time, and is based on the Safety Factor (SF)
metric, which considers several elements related with landslides,
such as slope degree angle, soil density, vegetation type, among
others. Therefore, the system is able to run in a proactive manner
with a high level of accuracy, avoiding that people remain in risky
areas when a landslide is about to begin. The App is designed for
mobile devices (smartphones and tablets) where the data could be
displayed in real time using a friendly interface.

The main goal of this work is to enable a landslide monitoring
in risky areas by everyone interested (authorities and citizens).
The solution is designed to the context of Smart Cities and IoT
environments, implementing an autonomous solution driven to
data visualization in real time and landslides warnings. Besides that,
the proposed system is generic enough to provide a sustainable and
low cost deploy in any interested cities and locations with landslide
issues. This work is organized as follows: The Section 2 presents
the related work. The proposed solution is described in Section
3. In Section 4 a simulated evaluation of the monitoring model is
presented. Finally, the Section 5 describes the conclusion and points
for future work.

2 RELATEDWORK
A typical Wireless Sensor Network (WSN) is an ad hoc network,
composed by sensor devices that have the capacity to collect data,
in different contexts (military, medical, home/industrial automa-
tion, and so on), and autonomously transmit them using a wireless
infrastructure. The sensors are devices with processing and energy
constraints [3]. The energy of sensor nodes is supplied by a battery
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Figure 1: System architecture

with a limited lifetime. Thereby, methods for energy saving are very
relevant in WSNs. The use of a WSN in order to remote monitor
landslides is presented in [4], [5] and [6]. These works adoption the
paradigms of Smart Cities [7] and Internet of Things [8], performing
remote monitoring in real time and processing the data collected.
To implement this monitoring approach a robust infrastructure is
needed, once the data must be collected, transmitted, processed and
presented to the users.

In this work, we consider a special type of WSN, which sensor
nodes are located underground, called Wireless Underground Sen-
sor Network (WUSN) [9]. The literature presents several works that
address the remote soil monitoring based on underground sensor
networks. Most of these approaches are designed for farming or
general purpose activities, as shown in [10] and [11]. Despite both
works are aimed for farming, they have architectural similarities
with our work, such as the Wi-Fi sensor network and the cloud
computing platform for storing and processing data. The works
described in [12] and [13] present solutions for landslide monitor-
ing. However, these works do not present an end to end solution,
focusing in the sensor network connectivity or in the model to
trigger landslides warnings.

The use of a Safety Factor (𝐹𝑆) modeling in order to define a
threshold that trigger an unstable soil scenario has been addressed
by the literature for decades, as discussed in [14] and [15]. This
approach considers the relationship between structuring and dis-
ruptive soil forces. In addition, the finite slope model is wide used
for landslides monitoring, once it assumes that a slope length, and
consequently its height, is much greater than the soil layer depth.
Then, most of the works use this specific modeling to apply their
policies to dynamically analyze the structuring and the disruptive
soil forces, and define the Safety Factor of a risk area, as described
in [16] and in [17].

Despite the literature presents works for landslide monitoring,
most of them address the problem partially, focusing on the sensor
network dependability or in the modeling of the Safety Factor. Thus,
our system differs from similar works due its holistic perspective,
once it presents an end to end approach based on the IoT paradigm.
Besides that, the public data visualization in real time by the citizens
through an App implemented in our solution should have a major
impact on the efficiency of a landslide warning, and on a successful
evacuation process as well.

3 THE PROPOSED SYSTEM
The proposed system uses an Iot environment to implement a
real time monitoring scheme. The solution architecture, the Safety
Factor model, the cloud computing platform and its interface with
the App, and a estimated cost to deploy the proposed system are
presented in details in the following sections.

3.1 System Architecture
The monitoring starts with a Wireless Underground Sensor Net-
work composed by several humidity sensors deployed in the soil of
a risk slope. Then, the communication between the sensors and the
access point is performed by the Wi-Fi protocol. The access point is
responsible for sending the collected data to the cloud computing
platform, where the data is processed and stored. The cloud com-
puting platform also has the role of an application server running
the Safety Factor model and feeding the App designed for mobile
devices. Lastly, the App is responsible for data visualization and for
warning messages to the users when a landslide is about to occur.

The system architecture is shown in Fig. 1. To ratify the pro-
posed architecture, a system prototype was implemented using
three Arduino Uno R3, each one attached to a humidity sensor.
The Arduino uses a ESP8266 Wi-Fi module to send the collected
data to the access point. Then, the access point routes the packets
through the internet to a data channel previously configured in
the ThingSpeak platform, which is a cloud computing environment
that enables instant visualization of live data, data mining and alerts
configuration, as described in [18]. An initial test was performed
to analyze if the data collected by the sensors would be properly
stored in the cloud computing platform and visualized in the App.

As described in [19], the WUSNs have several specific connectiv-
ity characteristics in comparison with traditional sensor networks,
e.g. the communication channel, robustness. Therefore, an empir-
ical approach was chosen for positioning the sensors in order to
evaluate the connectivity and the robustness of the data collection
process, instead the using simulation tools. This positioning issue
refers to the distance between each sensor. If the sensor nodes are
too close to each other, there may be redundant data collection,
which leads to higher energy consumption due to the operation of
non functional sensors. On the other hand, if the sensors are not
close enough, the network can present lack of connection, leading
to packet losses, and thus harming the real time monitoring process.
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Each collecting point is composed by one Arduino, one humidity
sensor and oneWi-Fi Module, and was deployed in a box with small
amount of brown soil, as depicted in Fig. 2. The communication
between each collecting point (sensor nodes) is based on the multi-
hop paradigm. Thus, each sensor only can communicate with direct
neighbors, and the data are sent in hops over the sensor nodes
to reach the gateway, when the data is finally sent to the cloud
computing platform. Each box is place apart 10m from other and
buried at a depth about 0.5m, to create a real WUSN scenario. Then,
three test replications were performed, in order to analyze three
rain scenarios over about 40m2 area. To this end, the boxes were
filled with water using different time intervals on each scenario,
performing a similar approach with the work described in [20].

Figure 2: The Collecting Point

Every test replication is related to fill the soil box with some
amount of water uses the constant value of 10 ml of water per
time. The first test replication is related to a light rain scenario, and
fills the soil box with 10 ml of water every 6 minutes. The second
scenario maps a medium rain, and the 10 ml of water is putted in
soil box the every 3 minutes. Finally, to simulate a heavy rain, the
amount of 10 ml of water is placed in the soil box every 30 seconds
in the last test replication.

For all the observed scenarios, the experiment was finished after
10 rounds, which means that the soil box was filled with 100 ml
of water. The value of the soil moisture rate is measured by the
sensors at the end of the mentioned time intervals of each scenario.
In other words, on the light rain scenario the first soil moisture rate
is measured at 10 minutes, just before the second round of 10 ml
of water, the next measure occurs at 20 minutes, and so on. The
results are presented in Fig. 3, the average value obtained from the
three boxes are displayed for each scenario.

As expected, at the beginning of the experiment the highest
soil moisture rate is related to the heavy rain scenario, since the
measurement was performed only 10 seconds later than the first
round of 10 ml of water. It is important to notice that around the

seventh round of 10 ml of water (totaling 70 ml of water in the
soil box) all the scenarios present a similar soil moisture rate. This
point indicates the saturation of water in the soil box, once the new
rounds of 10 ml of water have no relevant impact on the humidity
rates collected by the sensors.

Figure 3: Results considering three rainy scenarios

Despite the experiment performed used a static time interval
between each sensor reading, this approach should be dynamic in
order to obtain energy savings. The soil verification time is deter-
mined according to the context. Therefore, when there is heavy
rain, for example, the frequency of data collection should be dy-
namically increased by sensor nodes in order to perform a fine
grained monitoring control. On the other hand, in sunny days, the
frequency for collecting data may be decreased to provide energy
saving on the sensor network. This dynamic reading of the sensor
network is pointed as future work in Section 5.

It is worth mentioning that each line in the graphic depicted
in Fig. 3 was generated at run time by the ThingSpeak platform.
Then, all the collected data was combined into a single chart to
provide a better visualization in this paper and a holistic view of
the soil moisture behavior on each rainy scenario. Besides that, the
platform has many data visualization options and a friendly control
panel for personalized configuration according the user demand.

3.2 The Safety Factor Model
As mentioned earlier, the finite slope modeling is more suitable for
landslides monitoring in hills and mountains, once these scenarios
present a thin soil layer upon a big rocky layer. Since our work
address landslides originated by the rain in mountainous terrains,
the implemented sensor network is aimed to monitor the soil mois-
ture, once this is the main variable to define the value of the Safety
Factor (𝑆𝐹 ). It is important to notice that some characteristics that
impact the value of 𝑆𝐹 are constants for each slope (vegetation type,
slope degree angle, etc.).

Once the finite slope model assumes that a slope length, and
consequently its height, is much greater than the soil depth, and the
width is unitary, the analysis must consider only two dimensions,
as depicted in Fig. 4. As shown in [21], the water penetrates the soil
until reaching the rocky layer, which has a much greater density in
comparison with the soil layer. Then, the water accumulates and
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Figure 4: Finite slope model

saturates the soil in that region. The more rain, the more water is
accumulated, raising the water level. This behavior of the Safety
Factor is modeled by Eq. 1 as follows:

𝑆𝐹 =
𝑐 + (𝜌𝑠 .𝑔.𝑧.𝑐𝑜𝑠2𝜃 − 𝜌𝑤 .𝑔.ℎ.𝑐𝑜𝑠

2𝜃 ).𝑡𝑎𝑛𝜙
𝜌𝑠 .𝑔.𝑧.𝑐𝑜𝑠𝜃 .𝑠𝑖𝑛𝜃

(1)

Where:
• 𝑐 is the cohesion level (N/m2). Cohesion level is defined

as the shear strength at zero normal pressure on the surface
of failure. Based on this definition, cohesion level has a
constant parameter for each soil type.

• 𝜌𝑠 is the density of wet soil (kg/m3). Wet bulk density
is the mass of soil plus liquids/volume as a whole. The dry
bulk density of a soil is inversely related to the porosity of
the same soil: the more pore space in a soil the lower the
value for bulk density.

• 𝑔 is the gravity acceleration (m/s2). For slope modeling
scenarios, the gravity acceleration is a constant of value
equal to 9.8.

• 𝑧 is the soil depth (m). It considers the depth from the soil
surface until the end of its layer, or in other words, until
the beginning of the rocky layer of a slope.

• 𝜃 is the slope degree angle (degrees). It indicates how
steep is a slope.

• 𝜌𝑤 is the water density (kg/m3). It depends on both the
air pressure and the temperature of the area. These vari-
ations in density are very slight though, so unless the an-
alyzed slope takes place in an area with an extreme tem-
perature/pressure, the water density may be consider as a
constant of value equal to 1.

• ℎ is the water level height (m). It is related with how tall
is the water level underneath the soil. In other words, how
much water have passed on through the soil surface when
a rain scenario is observed.

• 𝜙 is the internal friction angle (degrees). It indicates the
shear strength parameter of soils, and it is used to describe

the friction shear resistance.

If the value of 𝑆𝐹 is greater than or equal to 1, the soil is on a
stable scenario. Otherwise, if 𝑆𝐹 presents a value lower than 1, an
unstable soil scenario is detected, and a warning about landslides
should be sent to the population.

As can be seen in Eq.1, the cohesion level 𝑐 , the density of wet soil
𝜌𝑠 , and the the internal friction angle𝜙 are the variables relatedwith
the soil type of a specific location, since different soil types present
different values of theses variables. To calculate the cohesion level
𝑐 , usually is considered only the value of the soil cohesion (𝑐𝑠 ).
However, it is also necessary to evaluate the impact of the vegetation
on the soil cohesion. As shown in [22], the vegetation has a relevant
role in the Safety Factor model due its roots underneath the soil.
Thus, in order to consider the vegetation impact, the value of 𝑐 is
specified as 𝑐 = 𝑐𝑠 + 𝑐𝑟 , where 𝑐𝑠 is the soil cohesion and 𝑐𝑟 is the
roots cohesion.

Thus, in order to observe the behavior of these four mentioned
variables when different soil types are analyzed, an empiric observa-
tion was performed. This observation was aimed to verify how fast
different soil types take time to get saturated (totally wet) and then
to get dry. The same testbed described in the initial tests presented
in Section 3.1 was used. However, instead of an unique soil type
all over the test, two different types was analyzed. In this scenario,
clay soil and black soil were chosen to perform the test, due their
relevance over the Brazilian soil types. Thus, the experiment was
designed to collect data using a soil similar to the one that will
be found in a real external scenario. The results provided by this
experiment enable the mapping of the variables related to the soil
type in the Safety Factor modeling (Eq. 1), once different soil types
were empirically analyzed.

The expected test results are that soils submitted to the same
amount of water may present different results in relation to the hu-
midity, in a determined period of time. As pointed in [23], the black
soil has a higher water retention capacity than mineral particles,
so this type of soil is more efficient in reducing the water effect
in the friction between the mineral particles. For the clayey soil,
the interaction between the mineral fraction and organic matter
is higher, which results in lower availability of organic matter to
interact with the water added to the soil. Consequently, clay soil re-
tains more water. Therefore, it is possible that the humidity sensor
will take a little longer to check the humidity variations close to it.

In the first experiment, it was added 10 milliliters of water for
every 10 seconds in each one soil type in extremely dry conditions.
After each time was observed the resultant behavior. Fig. 5 presents
the result for the percentage of soil moisture in relation to the
amount of water in the soil (in ml), for two distinct soils: a black
and a clay soil. It can be verified that the curve for the percentage
of moisture of the black soil is more accentuated. Therefore, it can
be concluded that the arrival of water in the vicinity of the sensor
occurs in a short period of time. The clay soil retains the water near
the surface, according to expectations. After the water arrives near
the sensor, the curves tend to follow constant values.

The drying time for both soils was also considered in these initial
evaluations of the proposed prototype, as we can see in Fig. 6. In
this experiment, the two mentioned types of soil were subjected
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Figure 5: Soil moisture percentage in relation to the water
amount in the soil (ml). For both the black and clayey soils.

to 40 milliliters of water for each minute, in a total period of 300
minutes. We expect a period for the water to reach the vicinity
of the sensor. This event is verified in the first minutes of the
experiment, as shown in the results. Approximately 80 minutes
later, the remaining water still tends to reach the vicinity of the
sensor. The moisture percentage of black soil is higher than the
clayey soil in the initial minutes. In addition, the black soil drying
time is lower than the clay soil, as expected.

Figure 6: Drying time for brown and clay soil

Once empirically ratified that the soil type impact on the Safety
Factor model, it is required to define what is the amount of water
in the soil which leads to an unstable slope scenario. To this end,
an analysis of the fraction ℎ/𝑧 in Eq. 1 was carried out, since this
fraction indicates how high is the water level under the soil surface.
In order to highlight the significance of the ℎ/𝑧 behavior, its value
close to 1 indicates that water takes almost all place under the soil
surface, leading to an unstable slope scenario.

The need is to know the value of ℎ/𝑧 that turns the value of the
Safety Factor 𝑆𝐹 equal to 1, since 𝑆𝐹 equal to 1 is the lower bound of
the stable soil threshold. Thus, the definition of thismentioned value
enables to know the depth that the sensor should be deployed in
that location. Then, when this sensor measures a value of humidity
that indicates a saturated soil (𝑆𝐹 equal to 1), it triggers the warning
of eminent landslide.

To obtain the fraction ℎ/𝑧, it is isolated in Eq. 1 and the value of
𝑆𝐹 is set equal to 1, leading to the relationship described below in
the Eq. 2:

ℎ

𝑧
=

𝑐

𝑡𝑎𝑛𝜙.𝜌𝑤 .𝑔.𝑧.𝑐𝑜𝑠
2𝜃

+ 𝜌𝑠

𝜌𝑤
.(1 − 𝑡𝑎𝑛𝜃

𝑡𝑎𝑛𝜙
) (2)

When an algebraic analysis about how the values of the other
variables impact on the fraction ℎ/𝑧, some relationships may be
observed. The greater the value of 𝑐 and 𝜙 , the greater is ℎ/𝑧. This
is an expected behavior and was ratified by the latter experiment
performed with brown and clay soil, since a soil with great cohesion
level retains more water, increasing the water height under the soil
surface (variableℎ in Eq. 1). On the other hand,𝜃 e 𝑧 are proportional
inverse to the fraction ℎ/𝑧, so the lower the value of 𝜃 e 𝑧, the lower
is ℎ/𝑧. This relationship is intuitive, once the higher is the soil layer,
the higher is the value of 𝑧, and the height of water will have less
significance for the instability in this case. In addition, the lower is
the steep of a slope (𝜃 ), the lower is the impact of the gravity for
leading a landslide over that area. These relationships are analyzed
in a simulated scenario presented in Section 4.

3.3 The Data Server and the App
For the purpose of connecting the WUSN to a data server, the
ThingSpeak platform was chosen. The main role of updating data
continuously is done by Thingspeak, which has APIs for collecting
data produced by sensor networks or IoT devices and APIs for
running applications. Therefore, it offers real-time data collection,
data processing, and also simple visualizations for its users.

Another important feature about ThingSpeak, is it allows the
development of applications based on the data collected. It provides
additional support for the programming languages Ruby, Python
and Node.js. Thus, any user is able to implement and run his own
applications on the ThingSpeak platform. In this work, a Python
program was implemented for running the Safety Factor modeling
presented in Eq. 1 and Eq. 2.

The App was implemented for Android mobile devices, and is
presented in Fig. 7 with the GUI in Portuguese, since this project is
initially addressed for people who live in Brazil. The users are able to
visualize the current average rates of soil moisture and rainfall, and
a twelve hours historic of both metrics. These main screens enable
the real time monitoring from a specific location. In addiction, a
screen designed for landslides warning is also presented.

As mentioned earlier, the soil moisture is obtained directly from
the humidity sensors. The works described in [24] and [25] show
the soil moisture and the pluviometric rate have a direct relation-
ship, and the latter could be calculated by analytic models. How-
ever, there are several public weather API available on the internet,
such as Open Weather Map [26] and Free Weather API [27], which
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Figure 7: The main App’s screens

provide pluviometric rate and other relevant weather data from a
specific location with a suitable accuracy. Therefore, in order to
provide a low cost solution, the App gets the estimated pluviomet-
ric rate from a specific location through a HTTP request to the
Open Weather Map API. The use of the mentioned API enables a
significant reduction of the solution cost, once the data collected by
several pluviometric sensors attached to Arduino controllers with
Wi-Fi modules are replace by the data obtained from the API.

However, it is important to notice that even without an App to
provide data visualization, the ThingSpeak platform is able to make
feasible the real time monitoring of the soil moisture rates collected
by the sensor network. This feature was the main reason that justify
the cloud computing platform chosen for this project, since the
authorities relatedwith civil defense activities could remotemonitor
selected areas only using the cloud computing interface.

3.4 Estimated System Cost
Asmentioned before, one of themain characteristics of the proposed
solution in this work is its low cost. This is achieved due the system
architecture is composed by simple devices, which are easily found
in most of electronic stores around the cities. Therefore, even when
large areas should be monitored, the system cost is suitable to the
budget of the cities.

In order to deploy the whole system to perform a real time
monitoring of a risk area, enabling also real time visualization
through an App, the devices listed bellow is required:

• Collecting point: Its prototype is depicted in Fig. 2 and
is responsible for collection data from the target slope. It
is composed by 01 Arduino Uno R3, 01 Humidity Sensor,
01 9V Battery, 01 Wi-Fi Esp 8266 module, 01 CD4050 inte-
grated circuit to supply 5V output for the Wi-Fi module, 01
Protoboard and a set of cables and jumpers;

• Gateway Wi-Fi: Composed by a router aimed to send the
data collected by the sensor network to the internet;

• Data Server: Responsible for storing and processing the
collected data, and for feeding the information displayed
on the App;

• App: Aimed to data visualization by the local population,
government agents, or any person interested in.

To provide an estimated budget for a risk slope with a size of a
soccer field (8,250 m2), considering the same rate of sensor per m2

used in the initial tests presented in Sec. 3.1, the estimated cost to
deploy the system is described in Table 1.

Device Unitary cost (USD) Amount
Collection Point 38 200

Gateway 55 1
Data Server 948 12 months

App 6k 1
Total cost (USD): 14.6k

Table 1: A budget to monitor a soccer field size slope

The unitary cost was calculated using the value of each de-
vice available in [28]. Ten certified sellers by these mentioned e-
commerce platforms were analyzed in order to obtain the average
devices price. To define the data server cost, instead of evaluate
the server price for buying and configuring it, the cost of a cloud
computing platform (ThingSpeak) annual plan is shown.

To analyze if the system budget effectively address a low cost
solution, we performed a comparison with the most recent slope
containment plan made by the city of Petrópolis in Brazil and
described in [29]. The mentioned plan indicates the need of inter-
vention in 25 risk areas spread over the city. The whole project was
budgeted in 26 million USD, which means an average cost of 1.04
million USD per risk location. Thus, consider the system budget for
one risk location presented in Table 1, the system cost is about 1.4%
of a slope containment intervention cost in one mapped risk area.

However, it is worth mentioning that the slope containment in-
tervention and the proposed monitoring system are complementary
approaches. The interventions specified in the slope plan are re-
quired for preventing a landslide. On the other hand, the proposed
solution in this work has the role of monitoring the risk of eminent
landslide in real time, and is aimed for general information and to
send warnings for the local population.

It is important to notice that the total cost mentioned in Table
I is composed only by activities directly related with the system,
such as devices, cloud computing plan’s fee, software development
(App), etc. Therefore, there are indirectly costs not listed in Table I.
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Scenario 𝜌 (kg/m3) 𝑐𝑠 (N/m2) 𝑐𝑟 (N/m2) 𝜙 (°) 𝜃 (°) 𝑧 (m)
1 1,488 14,613 4,292 28 30 5
2 1,569 2,224 6,718 46 48 6
3 1,779 6,704 9,323 32 28 14
4 1,673 17,011 18,077 10 32 6
5 2,052 419 14,765 24 27 13

Table 2: The parameters used for each scenario

These costs are may be related to previous geological analysis of the
risk area, skilled labor, hiring of machinery and other equipment
required for the deployment stage, among others.

Besides that, the system consider the multi-hop architecture for
the sensor network communication, where the data collected is sent
to the internet through a single gateway. This was the architecture
chosen for the system and ratified through the initial tests described
in Section 3.1. However, the sensor network literature offers sev-
eral approaches for the communication architecture and topology,
as discussed in Section 2 and 3.1. As the ones that highlight the
most, it is worth to mention the clustered network communication,
mesh, star or hybrid networks, among other. Despite several ar-
chitectures may be suitable for the proposed system, they present
similar concerns to the trade-off between power consumption and
communication performance. Thus, the great difference between
them should be the number of gateways deployed over the sensor
network. Table I shows the unitary cost of a gateway is about 0.3%
of the total costs, and different sensor networks communication
approaches will not present a relevant impact on the system budget.

4 SAFETY FACTOR EVALUATION
This evaluation is aimed to analyze if the Safety Factor is able to
define the depth of the collecting points accurately, according to
the characteristics of the slope to be monitored. As the performing
of real tests to evaluate the proposed Safety Factor is practically
infeasible, due to the several restrictions to reproduce a real slope
considering all its natural elements presented in Eq. 1, a simulated
evaluation was chosen.

The information about the sensors depth to trigger the warnings
consistently should be obtained according to the following steps:
(𝑖) observing the slope characteristics to define the values of the
parameters described in Eq. 1; (𝑖𝑖) assuming the value 1 to the
Safety Factor (lower bound of a stable slope scenario); (𝑖𝑖𝑖) finally,
using the Eq. 2 to define the fraction ℎ/𝑧, and consequently the
value of 𝑧, once the value of ℎ is previous knew (height of the soil
layer) for a specific location. To this end, random values for the
variables described in Eq. 2 were generated, in order to have several
slope scenarios, e.g. a steep slope with great soil cohesion but few
vegetation, a slope not too steep but with low soil cohesion and
large vegetation. As mentioned earlier, 𝑔 and 𝜌𝑤 are constants, and
equal to 9, 81𝑚/𝑠2 and 1000𝑘𝑔/𝑚3, respectively. The remain values
which are randomly generated are depicted in Table 2.

It is important to notice that even the same slope may present
heterogeneous scenarios, once at some point the slope may be steep,
but at others it tends to be flat. Therefore, sensors from a same
WUSN may be deployed in different depths, leading to a complex
heterogeneity that should be detailed analyzed in the design stage.

The values of the variables and the depths of the corresponding
sensors for each scenario are presented in Table 3.

Scenario ℎ/𝑧 [%] Sensor Depth [m]
1 83.9 0.8
2 21.4 4.72
3 50.5 6.93
4 44.7 3.32
5 4.1 12.47

Table 3: Sensor depth for each scenario

A dataset that implement a double ramp similar to the shape of
the letter "M" was used in this simulated evaluation. The dataset
provides readings of soil moisture, collected by humidity sensors,
and was obtained in [30]. The double ramp with "M" shape means
the value of the soil moisture increases fastly in the beginning,
until reach the upper bound. Then, it starts to decrease to a medium
value, when it starts to increase again achieving the upper bound
for a second time. Thus, the selected dataset models a scenario
with heavy rain, turning into medium rain until the beginning of a
new window of heavy rain. The sensor of the mentioned dataset
reads the soil moisture in a values range of 0 to 1023, and related a
saturated soil with the reading value equal to or greater than 1015.

Figure 8: Soil moisture measurements from the dataset

The Fig. 8 depicts when landslides warnings should be sent if the
proposed Safety Factor modeling was used. These warnings occurs
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in two time windows, the first is between 17:45 and 18:00, and the
latter is about 19:00, as indicated by the red dots in the graphic.

5 CONCLUSION AND FUTUREWORK
This work presented an IoT-based system for remote monitoring
slopes mapped as risk areas for landslides. A prototype was im-
plemented and evaluated through real tests, which was aimed to
simulate the system behavior for several rainy scenarios. The re-
sults ratified the model architecture to measure the soil moisture
rates with a suitable accuracy. The cloud computing platform cho-
sen for the system implementation enabled data processing in real
time, in addition to provide a reliable and robust storage for the data
collected by the sensor network. Moreover, it had been able to feed
an App consistently, in order to achieve real time data visualization
by the user through a friendly interface.

In addition, a model to calculate the Safety Factor of a slope was
also described. This model is aimed to trigger landslides warnings
for the local population, based on the soil moisture rates collected
by the Wireless Underground Sensor Network. Using a simulated
scenario, the proposed model was able to indicate the effective
depth of each sensor of the WUSN, considering several parameters
related the monitored slope, such as soil type, slope angle, depth
of the soil layer, among others. The results show the Safety Factor
modeling consistently trigger warnings when the collected data
indicates a saturated soil moisture rate.

As future work, we intend to expand theWUSN in order to imple-
ment a heterogeneous network, running different communications
protocols, such as Bluetooth, LoRa and ZigBee. The objective is
to analyze relevant issues related to each protocol, such as power
consumption of the wireless modules attached to the Arduino, dis-
tance between the sensors, network dependability, among others.
More to the point, we will also analyze the efficiency of a hybrid
wireless sensor network (underground and surface), adding rainfall
sensors to the system architecture. This hybrid sensor network can
be an interesting alternative to the use of the public weather API
mentioned in Section 3.3, since the data collected from the rainfall
sensors is more accurate than the provided by the weather API. The
authors would like to acknowledge the financial support of FAPERJ
and CEFET/RJ for this work.
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