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ABSTRACT
Efficient navigation is a challenge for visually impaired people.
Several technologies combine sensors, cameras, or feedback chan-
nels to increase the autonomy and mobility of visually impaired
people. Still, many existing systems are expensive and complex
to a blind person’s needs. This work presents a dataset for indoor
navigation purposes with annotated ground-truth representing
real-world situations. We also performed a study on the efficiency
of deep-learning-based approaches on such dataset. These results
represent initial efforts to develop a real-time navigation system
for visually impaired people in uncontrolled indoor environments.
We analyzed the use of video-based object recognition algorithms
for the automatic detection of five groups of objects: i) fire extin-
guisher; ii) emergency sign; iii) attention sign; iv) internal sign, and
v) other. We produced an experimental database with 20 minutes
and 6 seconds of videos recorded by a person walking through
the corridors of the largest building on campus. In addition to the
testing database, other contributions of this work are the study on
the efficiency of five state-of-the-art deep-learning-based models
(YOLO-v3, YOLO-v3 tiny, YOLO-v4, YOLO-v4 tiny, and YOLO-v4
scaled), achieving results above 82% performance in uncontrolled
environments, reaching up to 93% with YOLO-v4. It was possible to
process between 62 and 371 Frames Per Second (FPS) concerning the
speed, being the YOLO-v4 tiny architecture, the fastest one. Code
and dataset available at: https://github.com/ICDI/navigation4blind.
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1 INTRODUCTION
The World Health Organization (WHO) estimates over 285 million
blind and visually impaired people globally, whose 39 million are
blind [1]. In Brazil, around 0.75% of the population is blind [2].
Visual impairment can seriously impact people’s quality of life, as
they encounter many challenges in most daily activities [3]. One
of the biggest challenges faced by such people is associated with
secure and efficient navigation [4], such as obstacles, stairs, traffic
corners, signposts on the pavement, and slippery paths [5, 6].

Over the past few years, several Computer-vision-based tech-
nologies have been proposed to increase the autonomy andmobility
of visually impaired people [7]. Such proposals combine different
types of sensors, cameras, or feedback channels [8] and process 2D
[9] and 3D [10] data. Despite the availability of such systems, they
still suffer from dynamic interactions and adaptability to changes

from the internal to the external environment. There are few easy-
to-use navigation aids, but these devices are expensive and inacces-
sible for most patients who need them [11], tending to be complex
to a blind person’s needs [5, 12].

This work presents the results of the initial efforts to develop
a system based on computer vision to support the navigation of
blind and visually impaired people in an indoor environment, in
our case, some corridors of a building on a university campus.

The building that is the focus of the case study has an embossed
tactile floor for the visually impaired. In this context, the first
planned functionality for a navigation system is to recognize and
provide feedback on boards and objects, divided into five classes.
In Figure 1 we present samples of each adopted class, and in Table
1 we describe in details each of them.

Figure 1: Examples of the labeled classes: a) fire extinguisher;
b) emergency sign; c) attention sign; d) internal sign; and e)
other

We conducted the case study with a database with 20 minutes
and 6 seconds of videos recorded by a camera positioned at the
chest height of the person as they walked through all the building
corridors. In these videos, we manually labeled each occurrence of
objects associated with defined classes (Figure 1).

After labeling the database, experiments were conducted with
different versions of the YOLO (You Only Look Once) [9, 13], which
is one of the most used one-stage video-based object recognition
algorithms. In the case study, we explore five YOLO’s versions: i)
YOLO-v3; ii) YOLO-v3 tiny; iii) YOLO-v4; iv) YOLO-v4 tiny; and v)
YOLO-v4 scaled.

In summary, the main contributions of the paper include:
• A dataset for indoor navigation, with annotated ground

truth bounding boxes of objects that represent common
interactive signs in a real-world situation;

https://github.com/ICDI/navigation4blind
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Table 1: Description of labeled classes

ID Name Description

A Fire extinguisher This type of object was selected for two reasons: i) it can be important in emergency situations; and ii) blind
people may collide with them in the hallways while moving.

B Emergency sign Signs with recommendations that must be followed in emergency/evacuation situations.
C Attention sign Signs that indicate equipment/recommendations that should be used in emergency situations, such as signs

that indicate the position of fire extinguishers.
D Internal sign Internal signs that identify the university rooms names.
E Other Boards/papers attached to the walls that do not fit into any of the previous categories.

• A study on the efficiency of state-of-the-art deep-learning-
based models applied to object detection in indoor environ-
ments;

• An effective indoor object detection model, achieving over
93% performance on average in uncontrolled environments.

To present these contributions, the remainder of this work is
organized as follows. In Section 2 we present the literature review;
Details about the methodology are in Section 3; Results and discus-
sions are in Section 4; Finally, Section 5 concludes the paper.

2 LITERATURE REVIEW
Several approaches have been proposed to improve social inte-
gration and support the development of daily tasks for blind and
visually impaired people. Among them, we mention studies related
to automated Braille text transcription [14], systems accessibility
[15], approaches to notify blind people about obstacles, and navi-
gation systems [5, 16].

This Section presents a literature review related to blind and
visually impaired navigation support. Subsection 2.1 details state-
of-the-art methods for different categories of this type of system.
Subsection 2.2 presents state of the art related to Video-based Object
Recognition, describing relevant techniques for navigation systems
development.

2.1 Blind Navigation System
Kuriakose et al [5] categorized the tools and technologies for blind
and visually impaired navigation support into five groups. Some
methods can be in more than one group. Subsections 2.1.1 to 2.1.5
detail each of them and present examples of their approaches.

2.1.1 Visual Imagery Systems: It uses computer vision algorithms
and optical sensors to detect obstacles and then guide the user to
navigate safely by giving directions to avoid them. Recent methods
fall under this group of systems [11, 17].

In [17] obstacles are detected with an RGB-D camera. Route plan-
ning is dynamically adapted to improve navigation safety based on
this detection. They recalculate the path using previously modeled
geometric information from the environment.

A navigation system for the blind was proposed in [11]. It is
a real-time system that descriptively monitors the environment,
providing audio that describes the objects and their location to the
user. They perform object detection and classification using the
trained Single Shot Detector (SSD) MobileNet v2 Convolutional
Network model installed on the Raspberry Pi 3 Model B+.

2.1.2 Non-visual Data Systems: Non-visual data systems do not use
vision algorithms or optical sensors as a primary resource. Methods
in this group commonly use several kinds of sensors. An example
of a method in this category, proposed by [18] uses the Internet of
Things (IoT) to detect objects with wireless sensors. The system
informs the user of its name and distance for each detected object
by voice feedback.

2.1.3 Map-based Systems: Such kind of system consists in applying
multimodal tactilemaps to assist the navigation of blind and visually
impaired people. These resources are an efficient way for spatial
learning—methods in this class present the difficulty of updating
maps’ contents.

The approach of [19] falls into this category. The authors pro-
duced a map designed with a participatory design approach. The
map used uses augmented reality, combining projection, audio out-
put, and tactile tokens.

2.1.4 Systems with 3D Sound: In this group, it is possible to point
out [20], which uses a wearable sensor that gives users tactile and
audio feedback to provide an auditory and tactile representation of
the surrounding environment.

It can also identify [21], which features a molded helmet with
stereo cameras and headphones. This system emits specific musical
sounds that correspond to information about characteristics of the
obstacle that the user faces. A drawback of such a group needs
previous train on the system.

2.1.5 Smartphone-based Solutions: This group involves solutions
that users use on smartphones, offering portability and convenience
for users. We can highlight recent works for this category [22, 23].

In [22] the authors propose a system called LineChaser to help
blind people walk in lines in public spaces. The system uses an
RGB-D camera to guide a blind user to the end of the line and
continuously reports the distance and direction to the last person
on the line, which must follow.

The method proposed in [23] the authors proposed the NavCog3
system, which is a navigation assistant that uses Bluetooth beacons
installed in the environment and a user’s smartphone. The sys-
tem guides you based on nearby points of interest (e.g., entrances,
stores) identified by wireless. This system can be scaled to large
environments but requires the prior installation of the necessary
equipment.
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2.2 Video-based Object Recognition
The object recognition task demands determining the location and
category of objects in an image. This research line has recently
received attention because of its relationship to video analysis and
image comprehension.

The development of Deep Learning Methods enabled the devel-
opment of powerful tools, which have contributed to improving
object recognition results concerning the traditional methods [24].
Deep Learning for object recognition can be divided into two cate-
gories [25]:

• Two-stage algorithms: as the name suggests, they perform
two steps. In the first step, we identify possible target re-
gions, and the second one completes the classification. This
method has high accuracy but also limits the detection
speed. We can highlight Convolutional Neural Network
(CNN) based architectures in this group, we can highlight
R-CNN, Fast R-CNN, and Faster R-CNN [26].

• One-stage algorithms: in a single step, use only one network
to predict object classes and bounding boxes. This class of
algorithms improves the detection speed, but the accuracy
for small target detection is not as good as the two-stage
algorithm. Architectures in this group, we can highlight
RetinaNet [27], YOLO [9, 13], and SSD [28].

In this paper, we compare the results of one-stage video-based
Object recognition algorithms. We selected versions of the YOLO ar-
chitecture for the experiments, which is one of the most commonly
explored.

YOLO [9] transforms the target detection into a regression prob-
lem. The whole framework only uses a relatively simple CNN struc-
ture to predict the bounding box’s position and the candidate box’s
class. The third version of YOLO (YOLO-v3), proposed by [29] in
2018, uses the variant of Darknet composed of 53 layer network
trained on ImageNet. For the detection task, 53 more layers are
stacked onto it, totaling a set of 106 fully convolutional underlying
layers.

In 2020 the fourth version of YOLO (YOLO-v4) was proposed
[13], which adopts YOLO-v3 as a one-stage dense prediction in
the head. Recently the fifth version of YOLO has been presented,
and it has been explored by several works [30, 31], but there is
still no paper about the YOLO-v5. By modifying the depth, width,
resolution, and structure of the YOLO-v4, the YOLO-v4 scaled [32]
improves the results and represents the state-of-the-art o such kind
of architecture.

3 METHODOLOGY
This work presents the results of the initial efforts to develop a
navigation system based on Computer Vision for blind and visually
impaired people in a closed environment.

We conducted a case study to assess the accuracy of state-of-the-
art Deep Learning algorithms for video-based object recognition
in the classification of objects present in the main building of a
university campus (Table 1).

This Section presents the case study methodology. The exper-
imental database is described in Subsections 3.1 and 3.2, which
present the process of video recording and object labeling , re-
spectively. Subsection 3.3 defines the Deep Learning algorithms

configurations and also the training process. Subsection 3.4 presents
the metrics used to evaluate the experimental results.

3.1 Video recording
We produced a videos’ database collected in the largest building on
a university campus, which has four floors with around a thousand
square meters each. Every building floor has a hallway that runs
through it thoroughly. In the middle of each floor, there is a central
ladder. We recorded videos walking in the halls on both sides of
the building on each floor.

The videos were collected in two days with a difference of ap-
proximately three months to verify the algorithms results under
different conditions. In this way, some objects were removed and
added to the building. We captured videos at different times, chang-
ing the sunlight incidence.

Considering that each building floor has two sides recorded twice
on different days, we captured 16 videos. The average time is about
75 seconds, totaling more than 20 minutes of recording time. Table
2 presents a list of information about each scene, including time,
the recording day, hour, and split we used in our trials.

All videos were collected with a Go Pro Hero 7 camera, posi-
tioned at the chest height of a person who walked through the
building hallway, making recordings with this camera facing him.
When a key object is found, the person turns the camera towards
it, turns it back to the front, and follows their path to the end of
the hallway. Figure 2 shows frames of collected videos and also
examples of labeled objects.

Table 2: Recording videos description

Duration
ID Floor Side Day Hour (seconds) Split

1 1st A 14:04 72 Train
2 1st B 14:08 74 Test
3 2nd A 14:13 84 Train
4 2nd B 08/09/2021 14:16 57 Train
5 3rd A 14:21 84 Validation
6 3rd B 14:25 52 Train
7 4th A 14:30 114 Train
8 4th B 14:33 61 Test
9 1st A 18:02 92 Train
10 1st B 18:06 55 Validation
11 2nd A 18:11 64 Test
12 2nd B 06/12/2021 18:13 42 Train
13 3rd A 13:18 71 Test
14 3rd B 13:22 38 Train
15 4th A 13:26 114 Train
16 4th B 13:30 103 Train

3.2 Object Labelling
We recorded the videos at a rate of 30 frames per second (FPS). We
selected only the first frame of each second of the video to compose
the experimental database. For each frame, we labeled the objects
of interest (Table 1) with a bounding box around it. In Figure 2 we
present some examples of the annotations.
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Figure 2: Samples of the labeling process.

We divided the videos into two sets, and then the authors did
the labeling process. Each person labeled one of the videos sets and
validated the labels assigned by the other. We show the number of
objects tagged for each class and their distribution in the training,
validation, and testing sets in Table 3.

Table 3: Number of objects labeled for each class

ID Name Train Test Validation Total

A Fire extinguisher 159 73 34 266
B Emergency sign 232 115 55 402
C Attention sign 265 110 53 428
D Internal sign 388 145 59 592
E Other 492 93 22 607

Total 1536 536 223 2295

3.3 Trained Models
To train, validate, and test the object detection algorithms, we split
our set of 16 videos (described in Subsection 3.1) into three subsets:

• Training set: the images of this set were used as examples
to train the models applied in the experiments;

• Validation set: this set provides an unbiased assessment of
a model trained with the train set while adjusting its hyper-
parameters. We adopt the early stop strategy to select the
best model for the training process, i.e., the model with the
highest value of AP on the validation set was selected; and

• Test set: this set was used to evaluate the results of each
model trained with the evaluation metrics - presented in
the Subsection 3.4.

We trained five different YOLO models and used them in the
experiments:

• YOLO-v3: The third version of YOLO proposed by [29] in
2018;

• YOLO-v3 tiny: This version was proposed by Joseph Red-
mon [29], consisting of decreasing the depth of the convo-
lutional layer of the YOLO-v3. This simplification makes
the YOLO-v3 suitable for real-time applications;

• YOLO-v4: The fourth version of YOLO proposed by [13]
in 2020;

• YOLO-v4 tiny: like YOLO-v3 tiny, this version simplifies
YOLO-v4 making it suitable for real-time application [33];
and

• YOLO-v4 scaled: modifies the depth, width, resolution, and
structure of the YOLO-v4. In a recent study with the MS
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COCO dataset, the YOLO-v4 scaled showed better results
in relation to the YOLO-v3, YOLO-v4, and others network
architectures [32];

3.4 Evaluation Metrics
We compared the YOLO architectures by using six metrics, cited as
follow:

• Precision: the percentage of correctly detected objects.
Considering the total of True Positives (TP) and False Posi-
tives (FP), we compute the Precision with Equation 1.

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(1)

• Recall: the fraction of relevant instances retrieved. Consid-
ering the total of TP and False Positives (FP), we compute
the Recall with Equation 2.

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(2)

• F1-score: is a harmonic mean between Precision and Recall.
We calculate the F1-score metric with Equation 3. ,

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 (3)

• Intersection over union (IoU): defines how accurate a
predicted bounding box was in comparison with the ground
truth. The IoU is computed with Equation 3.

𝐼𝑜𝑈 =
𝐴𝑟𝑒𝑎 𝑜 𝑓 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑏𝑜𝑥𝑒𝑠

𝐴𝑟𝑒𝑎 𝑜 𝑓 𝑢𝑛𝑖𝑜𝑛 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑏𝑜𝑥𝑒𝑠
(4)

The IoU value can vary between 1 and 0, and the higher the
value, the better the results. An IoU threshold value (con-
fidence level) can be used to define whether a prediction
is a TP or an FP, e.g., objects with IoU greater than 0.5 can
be considered a TP case for many kinds of applications. In
Figure 4 we present a comparison between different IoU val-
ues when considering the ground-truth and the estimated
bounding box in an object detection system. As we can see,
a threshold of 0.5 represents a good detection. When we
deal with video object detection, a detection can vary over
time, and detections in the following frames can confirm
the first detection.

Figure 3: Examples of different IoU metric values

• Average Precision (AP): is a popular evaluation metric
used for object detection, which combines Recall and Preci-
sion obtained with different threshold values.

To calculate the value of AP it is necessary to define a set 𝑅
of 11 equally spaced recall results (𝑅 = {0, 0.1, 0.2, ..., 0.9, 1}).
For each 𝑟𝑥 ∈ 𝑅, two equations are computed:
– precision(𝑟𝑥 ): returns the precision of the prediction

method when the recall value is 𝑟𝑥 . When this function
is computed to all values of 𝑟𝑥 ∈ 𝑅, the result is a
precision-recall curve; and

– max(precision(𝑟𝑥 )): selects the highest value obtained
with the precision(𝑟𝑦 ) function, for all values 𝑟𝑦 ∈ 𝑅,
let 𝑟𝑥 ≥ 𝑟𝑥 .

Figure 4 presents examples of curves obtained with the
functions precision(𝑟𝑥 ) and max(precision(𝑟𝑥 )).

Figure 4: Example of precision(𝑟𝑥 ) emax(precision(𝑟𝑥 )) curves

Based on the function max(precision(𝑟𝑥 )) the Average Pre-
cision (AP) is computed with the equation in Equation 5.

𝐴𝑃 =
1
11

11∑︁
𝑥=1

𝑚𝑎𝑥 (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑟𝑥 )) (5)

• Frames Per Second (FPS): represents the number of frames
that the algorithm was able to process per second. It is an
important metric, as navigation systems demand real-time
processing.

4 EXPERIMENTS
We train and tested our models on a PC with a CPU Ryzen 7 2700X,
32GB of RAM, and a GPU Geforce RTX 2070 Super. The source
code, trained models, and an example of object detection video are
available at https://github.com/... (the link will be shared if the work
is approved - to not interfere in the double-blind review process).

4.1 Experimental Results
Table 4 presents the results obtained with each of the trained mod-
els applied to detect objects in the test set. Each table row refers
to one of the trained models, and each column denotes one of the
evaluation metrics - in the order they have presented in the Sub-
section 3.4. As we can observe, all the tested methods are likely to
real-time processing, performing at a minimum frame rate of 62 in
the slowest network (YOLO-v4).
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Table 4: Experimental Results. 𝑡ℎ𝛼 refers to the minimum value to perform detection and select a class by the network and
𝑡ℎ𝛽 refers to the threshold to consider a detected bounding box good enough (IoU ≥ 0.5). FPS data extracted from [32] and
estimated with a GPU GTX 1080ti.

Threshold
Method th𝛼 th𝛽 Recall Precision F1-score IoU AP *FPS

YOLO-v3 0.25 0.50 0.91 0.88 0.90 72.76% 92.34% 73
YOLO-v3 tiny 0.25 0.50 0.80 0.81 0.80 65.16% 84.93% 368
YOLO-v4 0.25 0.50 0.88 0.91 0.89 73.70% 93.08% 62
YOLO-v4 tiny 0.25 0.50 0.78 0.90 0.84 77.12% 82.22% 371
YOLO-v4 scaled 0.25 0.50 0.92 0.87 0.90 73.76% 92.32% 97

Concerning the efficiency of the object detection task, we note
that all the networks have an AP value varying from 82% (YOLO-
v3 tiny) to 93% in the YOLO-v4 network. To improve a trade-off
analysis to simplify the model selection, we plot in the Figure 5.
This graph’s horizontal and vertical axes represent the FPS and the
% AP, respectively. We also plot the Pareto frontier of the tested
methods. We can observe that every method represents a good
selection in an application scenario with a highlight on the: YOLO-
v4, as the highest AP value; the YOLO-v4 tiny as the fastest network;
and the YOLO-v4 scaled as a good choice regarding efficiency and
processing time.

50 100 150 200 250 300 350
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85

90

94

YOLO-v3YOLO-v4

YOLO-v3 tiny

YOLO-v4 tiny

YOLO-v4 Scaled

FPS

%
m
A
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Figure 5: Scatter plot of the model selection experiment. The
light gray area highlights the Pareto frontier.

4.2 Qualitative results
To show the effectiveness of the tested method, we present some
examples of detections on our dataset of the YOLO architectures we
use. In Figure 6 we present results of the tested networks for three
video frames, of the scene with ID 11 on the Table 2. Despite the
AP results previously presented, we observe that such detections
do not differ as much in qualitative analysis.

5 CONCLUSION
This work presents experimental results for video-based detection
of objects in an uncontrolled indoor environment (corridors of
the largest building of a university campus). The case study was
conducted with five state-of-the-art deep-learning-based models

(YOLO-v3, YOLO-v3 tiny, YOLO-v4, YOLO-v4 tiny, and YOLO-v4
scaled). We achieved over 93% performance on average in our ex-
perimental database - which was created for this study and was
freely available.

The results obtained represent the initial efforts to develop a
system to assist the navigation of the visually impaired in uncon-
trolled environments. This paper also unlocks applications regard-
ing robotic navigation in indoor environments. In future works,
we intend to extend the amount of data detected, analyze the algo-
rithms in outdoor environments, and develop an application that
helps impaired people navigate our campus. We also aim to conduct
tests with blind people and develop wearable strategies to improve
our system.

As we provide our labeled database and the algorithms used in
the experiments, we hope to contribute to related works.
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Figure 6: Detection example of tested networks.
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