
Connectivity Evaluation of ESP32 in Outdoor Scenarios
Pedro Rendeiro

pedro.rendeiro@itec.ufpa.br
Federal University of Pará

Belém, Pará, Brazil

Jamile Leite
jamile.leite@itec.ufpa.br
Federal University of Pará

Belém, Pará, Brazil

Lucas Silva
lucas.damasceno.silva@itec.ufpa.br

Federal University of Pará
Belém, Pará, Brazil

Marcos Silva
marcos.lima.silva@itec.ufpa.br
Federal University of Pará

Belém, Pará, Brazil

George Sales
george.sales@celse.com.br

Centrais Elétricas de Sergipe S.A.
Barra dos Coqueiros, Sergipe, Brazil

Leonardo Ramalho
leonardolr@ufpa.br

Federal University of Pará
Belém, Pará, Brazil

ABSTRACT
The purpose of this paper is to evaluate WiFi (IEEE 802.11 b/g/n)
performance of ESP32 modules in outdoor scenarios using an off-
the-shelf access point (AP). This was done by measuring its received
signal strength indicator (RSSI) and application data transfer rates
at different locations of a relatively open area, prone to possible
sources of interference, in order to simulate a real-life usage situa-
tion. The results show that this setup is suitable for medium data
rate applications at distances up to 300m from the wireless access
point. Based on the acquired RSSI values, the achievable data rate
on the PHY layer was also estimated for each point based on the
hardware documentation. Throughout the text, challenges faced
during the implementation of the system are shared, as well as
the solutions found, which will be useful for those who wish to
replicate the experiment.

KEYWORDS
ESP32, Internet of Things (IoT), WiFi

1 INTRODUCTION
The Internet of Things (IoT) [18] market has rapidly expanded
over the last years, following the increased demand for communi-
cation and control for various devices, gadgets, and applications
from industry scenarios [8] to agriculture forestry [1]. The main
requirement applied for modern IoT devices is to provide effective
connectivity to ensure reliable remote communication and data
transfer in a wireless environment.

In order to further develop the IoT ecosystem and expand the area
of its applications, powerful low-cost and low-power solutions for
IoT devices are required. Typically, each IoT-based unit comprises
of a microcontroller (MCU) and a wireless communication module
or a combination of both in a single system-on-a-chip (SoC). In
particular, the ESP32 hardware modules and the facility of usage
of WiFi connectivity (IEEE 802.11 b/g/n) are very popular choices
for implementing IoT systems due to their high availability on the
market and the great number of resources for testing. [2, 17].

Nevertheless, it is not clear to what extent this combination is
suitable for outdoor applications and how far this hardware can
communicate with off-the-shelf access points (APs). There are some
works that perform experiments to obtain this kind of information.
Many of them use received signal strength indicator (RSSI) as met-
ric. Algorithms that use it to estimate location have proven to be
advantageous because of their low cost, high coverage, and absence

of requirements for hardware adaptations [24]. Furthermore, along
with Signal to Noise Ratio (SNR), RSSI is one of the main factors
considered in the IEEE 802.11 handover process [16].

For instance, in [4] the authors present a performance analysis
of WiFi signal propagation in real scenarios of irrigated agriculture,
performing measurements of RSSI as a function of distance from
the AP and height above the crop. However, instead of an ESP32
module, the authors use a sensor data logger named WiField [5].

In [3], it is presented a performance analysis of Fine Time Mea-
surement (FTM) implementation in different indoor and outdoor
scenarios using an ESP32 module. It also proposed an alternative
real-time implementation for distance estimation with the ESP32
using an approach based on machine learning which takes into
consideration the RSSI measures from different distances.

Data transfer rate is also an important factor in IoT systems.
Higher data transfer rates enable applications that would not be
possible otherwise. In [7], the authors show the importance of this
metric while evaluating the performance of a wireless network
between a device coupled to a drone and to cameras, enabling the
transmission of large amounts of photos.

In this paper, we intend to enrich the reference list by testing the
network performance of ESP32 using a WiFi connection and Global
Positioning System (GPS). A portable hardware prototype was built
along with network infrastructure and client-server applications
running over TCP/IP in order to create an IoT scenario based on
WiFi and ESP32. An off-the-shelf AP was used with a TCP server to
calculate RSSI and the application data transfer rates, forwarding
the desired information to a database that can be accessed and
visualized on a web page, where a map displays the measurements
made by the MCU in relation to its location.

The remainder of this paper is organized as follows. Section 2
describes the developed prototype and its environment. Section 3
explains how the tests and measurements were executed. Section 4
shows the results and discussion. Finally, Section 5 concludes the
paper and presents future works.

2 SYSTEM DESCRIPTION
2.1 Overview
An overview of the system developed to test the IEEE 802.11 b/g/n
performance of ESP32 can be seen in Fig. 1. In order to evaluate con-
nectivity in different positions of an open area, a portable hardware
was developed, composed of an ESP32 evaluation board and the
GPS module NEO-6M. Both use external antennas, and the former

 
 

XIV Computer on the Beach 
30 de Março a 01 de Abril de 2023, Florianópolis, SC, Brasil 

 

 

333



Pedro Rendeiro, Jamile Leite, Lucas Silva, Marcos Silva, George Sales, and Leonardo Ramalho

uses an external WiFi omnidirectional antenna (3dBi of gain). The
hardware is supplied by a battery to power the whole system.

Designed by Espressif Systems, ESP32 is a family of powerful
MCU modules. In this work, we use ESP32-WROOM-32U [14] mod-
ule, released in 2017 and based on the ESP32-D0WDSoC [13], which
uses a dual-core 32-bit LX6 microprocessor. This is one of the prod-
uct’s main advantages since high computation power is a crucial
contributor to the progress of IoT solutions [6]. Besides, this module
has built-in Bluetooth and WiFi connectivity and the possibility of
using an external antenna to enhance downlink and uplink quality.

It must be said that ESP32-WROOM-32U is no longer recom-
mended for new designs since ESP32-WROOM-32UE [15] with
ESP32-D0WD-V3 has been released as the newer version of the
series in 2020. The authors resorted to the previous model due to
the unavailability of the latest one in the brazilian market. How-
ever, this does not impact the connectivity tests since this update
is related to security and PSRAM memory issues [11].

Moreover, the off-the-shelf AP Action RF 1200 from Intelbras
was used to connect the prototype to a local area network (LAN).
This product is equipped with four omnidirectional antennas (5dBi
of gain each). In this same LAN, a local TCP/IP server was installed.
The server is responsible for receiving data from the prototype and
sending it to a non-relational database from Google called Firebase
Realtime Database [21], which is part of the Firebase development
platform. The data can be retrieved by its administrators and is also
made available through HTTP requests on a web page. It is also
used a smartphone to trigger and monitor every measurement via
Bluetooth serial communication.

Fig. 1 shows a simplified block diagram of the setup. Initially,
a user starts the measurements using Bluetooth communication
between a smartphone and the portable hardware. Then, the ESP32
exchanges messages with a TCP server via the network infrastruc-
ture, which is composed of a wireless link followed by Ethernet
connections. With these messages, the portable hardware calculates
the uplink and downlink data rates. Furthermore, the portable hard-
ware acquires its current position from GPS, RSSI, and timestamp.
Then, all this information is sent to the TCP server, which forwards
the data to the database. All these steps are better discussed in the
next section.

2.2 Finite State Machines
The firmware developed for ESP32 (client) and software for the local
server were designed as finite state machines (FSMs) synchronized
with each other in order to capture the RSSI and application data
rate. Fig. 2 describes the expected sequence of client and server
states defined to implement the expected behavior. Note that Blue-
tooth and Position states exist only on the client side, while state
Store is present only on the server side. The other states were posi-
tioned symmetrically in relation to the vertical axis of the image
in order to highlight the synchronization between the client and
server.

In state 0, ESP waits until it receives a message via Bluetooth and,
only then, tries to establish a connection with the server (state 1).
Once connected, they both enter state 2, on which the MCU starts
sending packets to the server during a pre-defined amount of time
and stores the total data, in bytes, that was sent. Next (state 3), it

UART

Portable Hardware Prototype

GPS module 
NEO-6M ESP-WROOM-32U

Antenna
1575.42 MHz Antenna 3dBi

Intelbras Action
RF 1200

Ethernet

LAN

InternetFirebase 
Database

TCP/IP 
Server 

Web Page

Smartphone

TCP/IP

TCP/IP

Figure 1: Simplified block diagram of the developed system
with portable hardware prototype and software employed.

starts receiving packets from the server for the same period of time
and stores how many bytes were received. Once this part is fin-
ished, ESP32 captures its coordinates from the GPS module through
Universal Asynchronous Receiver/Transmitter (UART) interface
(state 4). At this point, in state 5, the RSSI value and timestamp
in datetime format (yyyy-mm-ddThh-mm-ss) are obtained from
the network. The timestamp is provided by the Network Time
Protocol (NTP), a client/server networking protocol based on the
User Datagram Protocol (UDP) for clock synchronization between
computer systems and devices in networks with variable latency.
Based on the number of bytes successfully sent and received, ESP32
calculates the application uplink and downlink transfer rates in
Mbps, respectively.

Still in state 5, all the above information is put into a JSON and
sent to the server: timestamp, latitude, longitude, RSSI, uplink data
rate, and downlink data rate. Then, the server forwards the data to
Google Firebase Realtime Database (state 6).

2.3 Implementation Issues and Proposed
Solutions

In the course of the software development, four main failure points
were identified: i) interference due to the simultaneous use of Blue-
tooth and WiFi, ii) GPS data loss, iii) synchronization problems

 
 

XIV Computer on the Beach 
30 de Março a 01 de Abril de 2023, Florianópolis, SC, Brasil 

 

 

334



Connectivity Evaluation of ESP32 in Outdoor Scenarios

CLIENT SERVER

0
Bluetooth

1
Connect

Received BT
message from
smartphone 

2
Uplink Connection

established 

3
Downlink

Finished
uplink time 

4
Position

5
JSON

Got 
position

1
Connect

2
Uplink

3
Downlink

5 
JSON

6
Store

Finished
downlink time 

Connection
lost

JSON sent or 
connection lost

Connection
established 

Finished
downlink time 

Connection
lost

Finished
uplink time 

Connection
lost

Connection
lost

GPS failed
or

connection
lost Decoding

failed
or

connection
lost 

Data stored
or

connection
lost

JSON
decoded

Figure 2: FSMs defined in client (ESP32) and server.

between the FSMs, and iv) loss of connection between ESP32 and
the AP. They are briefly discussed below.

ESP32 has only one radio for both communication protocols
(Bluetooth and WiFi), and they do not work properly simultane-
ously [9]. Thus, Bluetooth is disabled when WiFi is used (states 1, 2,
3, 4, and 5 on the client). Otherwise, the data transfer rate measure-
ments could be compromised, as Bluetooth and WiFi would cause
interference in each other.

Another problem faced during the development was the GPS
data loss. More specifically, the GPS module periodically sends the
data via UART, so if the MCU is busy with other tasks and the
UART buffer is not read at time, the data is overwritten and gets
corrupted. Thus, in order to avoid such scenario, the software is
spitted into two parts, each one executed in one of the two cores
available on ESP32. The first core runs the client FSM shown in
Fig. 2, and the second core runs the application that reads the UART
buffer and processes the GPS data.

The third challenge in the development of the proposed system
was the synchronization between the FSMs of the client and sev-
ers. Initially, the uplink time counting started as soon as the TCP
connection was established. However, in our tests, the server was
starting the counting much earlier or later than the client. To deal
with this, the counting on the server was set to start only when
the server receives the first packet. In addition, another important
factor is that due to network delay, some packets reach the server

BLUETOOTH TCP / IP 

Connection estabilishement

Sends uplink packages
...

Calculates uplink rate

Receives downlink packages 
...

Calculates downlink rate

Sends JSONPrints JSON on the screen 

Triggers the measurements

Sends information
to the database

Creates JSON containing
all the information

Figure 3: Steps of the measurements.

even after the uplink timer has expired. For this reason, it is neces-
sary to wait a few seconds past the defined time, clear the server’s
RX buffer while there is still data, and only then go to the Down-
link state. Otherwise, it is likely that the JSON will not be decoded
correctly when received.

Finally, the last issue faced during the tests was the possibility
of losing connection between the portable hardware and the AP.
Therefore, using the ESP32’s system API, we set an event handler
for the MCU to clear the buffers and attempt to reconnect to the
AP indefinitely in case of disconnection. When the reconnection
is complete, the client returns to its initial state (Bluetooth). On
the server side, a timeout is set to identify this and other types
of connection loss. When this is reached, the TCP connection is
terminated, and the server also returns to its initial state (Connect).
As result, the system follows the cycle illustrated in Fig. 3 for each
measurement.

3 TEST EXECUTION
The executed test consists of fixing the AP on a given location,
walking with the prototype in an area to collect data periodically,
and sending it to the database through the network. There were six
pieces of data collected: latitude, longitude, timestamp, downlink
data rate, uplink data rate, and RSSI of the WiFi network. The
antennas between AP and portable hardware had line-of-sight to
each other during the whole of the time. The AP was positioned at
the height of approximately 3.7 meters, and the portable hardware
was moved within its range at the height of 2 m along the path.

Both uplink and downlink measurement time were defined as
5 seconds. The payload size chosen for the packets transmitted is
1024 bytes, which is the bigger power of two that does not exceed
Ethernet Maximum Segment Size (MSS), which is 1460 bytes [20].
By doing this, we respect Python documentation guidelines [22] and

 
 

XIV Computer on the Beach 
30 de Março a 01 de Abril de 2023, Florianópolis, SC, Brasil 

 

 

335



Pedro Rendeiro, Jamile Leite, Lucas Silva, Marcos Silva, George Sales, and Leonardo Ramalho

Figure 4: Web application developed to visualize the RSSI on
map.

avoid fragmentation in layer 3 since the TCP/IP server is connected
to the AP via Ethernet. Connection timeout on the server side and
GPS timeout on the client side were also defined as 5 seconds.

Furthermore, we conducted the tests on a two-way track. We
started from a central spot, where the AP was located and went
in one direction until the connection to the AP was lost. Then we
went in the opposite direction as well up to the point where there
was no more connection. At this point, we returned to the starting
position. All along this path, we tookmeasurements every 20meters,
approximately. It is important to mention that there was a light
vehicle flow on the road, as well as other 2.4 GHz networks available
at the site, which may have impacted some of the measurements
taken. However, for our purposes, this is not a problem since the
goal was to simulate a scenario close to real use.

To better visualize the acquired data, we have built a web appli-
cation that consumes the data stored in Firebase Realtime Database
and displays it on a map (Fig. 4).

4 RESULTS AND DISCUSSION
A total of fifty samples were collected during the tests. We have
exported the data to visualize the RSSI and the application data
rate versus the distance between the AP and the ESP32 module,
as shown in Fig. 5. The results indicate that the ESP32 module is
capable of communicating at distances as high as 300 meters in line-
of-sight conditions. In the area where the tests were performed, it

0 50 100 150 200 250 300

Distance (meters)

-90

-85

-80

-75

-70

-65

-60

-55

-50

-45

R
S

S
I 

(d
B

m
)

(a)

0 50 100 150 200 250 300

Distance (meters)

0

1

2

3

4

5

6

A
p

p
lic

a
ti
o

n
 D

a
ta

 R
a

te
 (

M
b

p
s
)

Downlink

Uplink

(b)

Figure 5: RSSI (a) and the application data rate (b) versus the
distance between AP and the portable hardware.

was not possible to place the portable hardware at distances higher
than 300m with line-of-sight.

In our tests, the minimum and maximum RSSI values obtained
were -89 and -46 dBm, respectively. As expected, the RSSI tends
to decrease slowly as the hardware moves away from the AP, as
shown in Fig. 5a. The outdoor tests performed by [3] resulted in a
graphic that decays much faster, although the authors describe it as
small-scale fading. Most of their samples whose distance was more
than 10 m resulted in an RSSI of less than -80 dBm. In contrast, only
a few of our samples resulted in powers lower than this when we
were at distances shorter than 250 m.

This difference seems to be related to the transmission power
and the number of antennas of the transmitter. We use the off-the-
shelf AP described in section 2, which has 4 external antennas, and
its maximum transmission power is 18 dBm [19]. These authors,
on the other hand, used an ESP32-S2 module as AP. Such device
has only one internal antenna and, depending on the modulation
and coding scheme (MCS), its typical TX power ranges from 13.5
to 18 dBm [12]. In addition, in our setup, we use external antennas
on the AP and in the ESP32 module, while in [3], the authors use
PCB antennas on both the AP and the client. Thus, in our tests, it
is more likely that the RSSIs are higher in our setup for the same
distance.

As shown in Fig. 5b, in terms of application data rate, our setup
achieved 6.16 Mbps on the downlink and 3.52 Mbps on the uplink,
suitable for medium data rate applications. On the other hand, for a
given distance, it is possible to notice some variation in the data rate.

 
 

XIV Computer on the Beach 
30 de Março a 01 de Abril de 2023, Florianópolis, SC, Brasil 

 

 

336



Connectivity Evaluation of ESP32 in Outdoor Scenarios

Table 1: Minimum RSSI and PHY data rate for different WiFi
configurations

WiFi configuration Data Rate RSSI
IEEE 802.11b 1 Mbps 1 Mbps -98 dBm
IEEE 802.11b 11 Mbps 11 Mbps -89 dBm
IEEE 802.n HT20 MCS 1 13 Mbps -79 dBm
IEEE 802.n HT20 MCS 2 19.5 Mbps -77 dBm
IEEE 802.n HT20 MCS 3 26 Mbps -74 dBm
IEEE 802.n HT20 MCS 4 39 Mbps -70 dBm
IEEE 802.n HT20 MCS 5 52 Mbps -66 dBm
IEEE 802.n HT20 MCS 6 58.5 Mbps -65 dBm
IEEE 802.n HT20 MCS 7 65 Mbps -64 dBm

Such variability is expected since the instantaneous data transfer
depends on the instantaneous quality of the wireless link, as well
as other factors. The effective rate of the application also depends
on the link between the AP and the WiFi network, the occupation
of the WiFi network itself, the link between the TCP/IP server and
the WiFi network, and other network elements between the ESP32
and the TCP/IP server.

In order to access the bounds of the ESP32 on the experiment,
we evaluate the achievable wireless data rate and the application
data rate versus the captured RSSI and show in Fig. 6. The former
was estimated for IEEE 802.11b and IEEE 802.11n configured with
20 MHz and long guard interval for MCSs 1 to 7. These results
are based on Table 1, which shows the relationship between the
wireless protocol, the corresponding achievable data rate, and the
minimum RSSI to use the corresponding configuration. The mini-
mum RSSI for each configuration was captured from [23], and the
achievable data rate for each one was captured from the ESP-IDF
documentation [10] for IEEE 802.11n. In the case of IEEE 802.11b,
the values of RSSI and data rate were captured from the datasheet
of the ESP32. Then, the achievable data rate is estimated as the
highest data rate for a given RSSI.

Fig. 6 shows the achievable data rate on the PHY link and the
measured application data rate from ESP32 in relation to RSSI val-
ues. We can see that the plot with the rates obtained, shown in
Fig. 6b, follows the same trend as Fig. 6a with the maximum rate
possible, though in smaller order of magnitude. As RSSI increases,
the data rate, both for uplink and downlink, tends to increase. The
smaller values in Fig. 6b can be explained by the many variables that
influence the application rate, such as the TCP retransmissions in
case of transfer failure, all the overhead caused by the network and
transport layers, and some lack of optimization on the embedded
software of the portable hardware.

5 CONCLUSION
In this paper, we give insight into the implementation of a low-cost
IoT system for monitoring RSSI and coordinates captured by means
of a GPS module, which are transmitted to a database over a WiFi
network by means of an ESP32 MCU in an outdoor environment. It
was verified that ESP32 modules, in setups similar to the developed
in this work, are suitable for medium data rate applications in areas
up to 300m in relatively open terrain without loss of connection.

-90 -85 -80 -75 -70 -65 -60 -55 -50 -45

RSSI (dBm)

10

20

30

40

50

60

70

A
c
h
ie

v
a
b
le

 D
a
ta

 R
a
te

(M
b
p
s
)

(a)

-90 -85 -80 -75 -70 -65 -60 -55 -50 -45

RSSI (dBm)

0

1

2

3

4

5

6

7

A
p
p
lic

a
ti
o
n
 D

a
ta

 R
a
te

(M
b
p
s
)

Downlink

Uplink

(b)

Figure 6: Achivable data rate on PHY link (a) and the appli-
cation data rate (b) versus the RSSI.

One possible way to enrich this experiment is to performmultiple
runs, varying some of the parameters and observing the impact on
the measurements. For example, different receiver antennas and
access points of different configurations could be used, and the
payload size could be varied. In addition, the UDP protocol could be
used instead of TCP in the communication between client and server
in order to observe the data rates without retransmission attempts.
Measurement of the rate of lost messages could be included in the
results for better monitoring of the packets. Furthermore, more
field tests could be carried out in order to increase the amount of
data obtained; thereby, other statistical measurement metrics could
be used for more reliable results, such as the average RSSI and rates
achieved for uplink and downlink for the same distance.

6 ACKNOWLEDGMENT
This work was developed as part of the project GImpSI - Gestão dos
Impactos da Salinidade em Isolamentos - with INESC P&D Brasil
and Eneva S.A. - under the framework of the R&D Program of the
Brazilian Electricity Regulatory Agency, code PD-11278-0001-2021.

REFERENCES
[1] Muhammad Ayaz, Mohammad Ammad-Uddin, Zubair Sharif, Ali Mansour, and

El-Hadi M Aggoune. 2019. Internet-of-Things (IoT)-based smart agriculture:
Toward making the fields talk. IEEE access 7 (2019), 129551–129583.

[2] Marek Babiuch, Petr Foltỳnek, and Pavel Smutnỳ. 2019. Using the ESP32 mi-
crocontroller for data processing. In 2019 20th International Carpathian Control
Conference (ICCC). IEEE, 1–6.

[3] Valentín Barral, Omar Campos, Tomás Domínguez-Bolaño, Carlos J. Escudero,
and José A. García-Naya. 2022. Fine Time Measurement for the Internet of

 
 

XIV Computer on the Beach 
30 de Março a 01 de Abril de 2023, Florianópolis, SC, Brasil 

 

 

337



Pedro Rendeiro, Jamile Leite, Lucas Silva, Marcos Silva, George Sales, and Leonardo Ramalho

Things: A Practical Approach Using ESP32. IEEE Internet of Things Journal
(2022), 1–1. https://doi.org/10.1109/JIOT.2022.3158701

[4] James Brinkhoff and John Hornbuckle. 2017. Characterization of WiFi signal
range for agricultural WSNs. In 2017 23rd Asia-Pacific Conference on Communi-
cations (APCC). IEEE, 1–6.

[5] James Brinkhoff, John Hornbuckle, Wendy Quayle, Carlos Ballester Lurbe, and
Tom Dowling. 2017. WiField, an IEEE 802.11-based agricultural sensor data
gathering and logging platform. In 2017 Eleventh International Conference on
Sensing Technology (ICST). IEEE, 1–6.

[6] Rym Chéour, Sabrine Khriji, Mohamed abid, and Olfa Kanoun. 2020. Mi-
crocontrollers for IoT: Optimizations, Computing Paradigms, and Future Di-
rections. In 2020 IEEE 6th World Forum on Internet of Things (WF-IoT). 1–7.
https://doi.org/10.1109/WF-IoT48130.2020.9221219

[7] Caroline Maul de A. Lima, Eduardo A. da Silva, and Pedro B. Velloso. 2018.
Performance Evaluation of 802.11 IoT Devices for Data Collection in the Forest
with Drones. In 2018 IEEE Global Communications Conference (GLOBECOM). 1–7.
https://doi.org/10.1109/GLOCOM.2018.8647220

[8] Giulio Demilia, Antonella Gaspari, and Emanuela Natale. 2018. Measurements for
smart manufacturing in an Industry 4.0 scenario a case-study on a mechatronic
system. In 2018 Workshop on Metrology for Industry 4.0 and IoT. IEEE, 1–5.

[9] Espressif. 2022. ESP-IDF Programming Guide: Coexistence. Retrieved 2022-07-
19 from https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/
coexist.html

[10] Espressif. 2022. ESP-IDF Programming Guide: Wi-Fi. Retrieved 2022-06-30
from https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/
network/esp_wifi.html

[11] Espressif. 2022. ESP32 Chip Revision v3.0: user guide. Retrieved 2022-10-28
from https://www.espressif.com/sites/default/files/documentation/esp32_chip_
revision_v3_0_user_guide_en.pdf

[12] Espressif. 2022. ESP32-S2 Family: datasheet. Retrieved 2022-08-01
from https://www.espressif.com/sites/default/files/documentation/esp32-s2_
datasheet_en.pdf

[13] Espressif. 2022. ESP32 Series: datasheet. Retrieved 2022-10-28 from https://www.
espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf

[14] Espressif. 2022. ESP32-WROOM-32D ESP32-WROOM-32U: datasheet. Retrieved
2022-10-28 from https://www.espressif.com/sites/default/files/documentation/
esp32-wroom-32d_esp32-wroom-32u_datasheet_en.pdf

[15] Espressif. 2022. ESP32-WROOM-32E ESP32-WROOM-32EU: datasheet. Retrieved
2022-10-28 from https://www.espressif.com/sites/default/files/documentation/
esp32-wroom-32e_esp32-wroom-32ue_datasheet_en.pdf

[16] Lucas Martins Figueiredo and Edelberto Franco Silva. 2020. Cognitive-LoRa:
adaptation-aware of the physical layer in LoRa-based networks. In 2020 IEEE
Symposium on Computers and Communications (ISCC). 1–6. https://doi.org/10.
1109/ISCC50000.2020.9219575

[17] Petr Foltỳnek, Marek Babiuch, and Pavel Šuránek. 2019. Measurement and data
processing from Internet of Things modules by dual-core application using ESP32
board. Measurement and Control 52, 7-8 (2019), 970–984.

[18] Alireza Ghasempour. 2019. Internet of Things in Smart Grid: Architecture,
Applications, Services, Key Technologies, and Challenges. Inventions 4, 1 (2019).
https://doi.org/10.3390/inventions4010022

[19] Intelbras. 2020. Manual do Usuário: ACtion RF 1200. Retrieved 2022-08-
01 from https://backend.intelbras.com/sites/default/files/2021-08/Manual-do-
usuario-Action-RF-1200-02.20.pdf

[20] James F. Kurose and Keith W. Ross. 2017. Computer Networking: a top-down
approach (7th ed.). Pearson Education, Harlow, England, Chapter Transport
Layer, 263.

[21] Margaretha Ohyver, Jurike V Moniaga, Iwa Sungkawa, Bonifasius Edwin Sub-
agyo, and Ian Argus Chandra. 2019. The comparison firebase realtime database
and MySQL database performance using wilcoxon signed-rank test. Procedia
Computer Science 157 (2019), 396–405.

[22] Python Software Foundation. 2022. Socket — low-level networking interface.
Retrieved 2022-07-19 from https://docs.python.org/3/library/socket.html#socket.
socket.recv

[23] WLAN Professionals. 2022. Laminated Card 802.11n/HT and 802.11ac/VHT |
MCS, SNR and RSSI. Retrieved 2022-06-30 from https://wlanprofessionals.com/
laminated-card-802-11n-ht-and-802-11ac-vht-mcs-snr-and-rssi/

[24] Weixing Xue, Weining Qiu, Xianghong Hua, and Kegen Yu. 2017. Improved
Wi-Fi RSSI Measurement for Indoor Localization. IEEE Sensors Journal 17, 7
(2017), 2224–2230. https://doi.org/10.1109/JSEN.2017.2660522

 
 

XIV Computer on the Beach 
30 de Março a 01 de Abril de 2023, Florianópolis, SC, Brasil 

 

 

338

https://doi.org/10.1109/JIOT.2022.3158701
https://doi.org/10.1109/WF-IoT48130.2020.9221219
https://doi.org/10.1109/GLOCOM.2018.8647220
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/coexist.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/coexist.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/network/esp_wifi.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/network/esp_wifi.html
https://www.espressif.com/sites/default/files/documentation/esp32_chip_revision_v3_0_user_guide_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_chip_revision_v3_0_user_guide_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-s2_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-s2_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32d_esp32-wroom-32u_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32d_esp32-wroom-32u_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32e_esp32-wroom-32ue_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32e_esp32-wroom-32ue_datasheet_en.pdf
https://doi.org/10.1109/ISCC50000.2020.9219575
https://doi.org/10.1109/ISCC50000.2020.9219575
https://doi.org/10.3390/inventions4010022
https://backend.intelbras.com/sites/default/files/2021-08/Manual-do-usuario-Action-RF-1200-02.20.pdf
https://backend.intelbras.com/sites/default/files/2021-08/Manual-do-usuario-Action-RF-1200-02.20.pdf
https://docs.python.org/3/library/socket.html#socket.socket.recv
https://docs.python.org/3/library/socket.html#socket.socket.recv
https://wlanprofessionals.com/laminated-card-802-11n-ht-and-802-11ac-vht-mcs-snr-and-rssi/
https://wlanprofessionals.com/laminated-card-802-11n-ht-and-802-11ac-vht-mcs-snr-and-rssi/
https://doi.org/10.1109/JSEN.2017.2660522

