
MPI Parallel Barnes-Hut variants

Rodrigo Morante Blanco∗

rodrigomorante@gmail.com

Universidade Federal do Paraná

Curitiba, Paraná, Brazil

Wagner M. Nunan Zola†

wagner@inf.ufpr.br

Universidade Federal do Paraná

Curitiba, Paraná, Brazil

ABSTRACT

The =-body problem appears in numerous fields, from stellar sim-

ulations to, more recently, AI applications. The Barnes-Hut (BH)

method is a tree-based method that allows better scalability when

dealing with this problem. In this work several variants of the BH

method are proposed which use MPI to distribute the workload.

KEYWORDS

=-body problem, Barnes-Hut method, Message Passing Interface

1 INTRODUCTION

The =-body problem appears in numerous fields, from stellar simu-

lations to, more recently, AI applications [12] [15]. The Barnes-Hut

(BH) method is a tree-based approximation which allows better

scalability when dealing with this problem. Recent applications of

BH in AImethods and in the visualisation of high dimensional data

[12] [9] have determined an increase of interest to accelerate BH

in modern multicore CPUs [5][6] and in distributed versions. In

this work several variants of the Barnes-Hut method are proposed

which use MPI to distribute the workload. We have analyzed our

implementations in a modern multicore CPU. Future applications

of our parallel/distributed methods could be combined with other

state of the art techniques to further accelerate the Barnes-Hut

method in multicore and CPU/GPU clusters. The classical =-body

problem can be described thus: Let there be = celestial bodies, in-

teracting gravitationally, whose corresponding masses, positions

and velocities are known at a given initial time. The =-body prob-

lem refers to the computation of each body’s position as time pro-

gresses. For each of the = bodies, = − 1 forces must be computed

for a total of =(= − 1) forces or $ (=2) computations. In order to

reduce the number of computations a tree-based method may be

used. The rest of this work is organized as follows: Section 2 dis-

cusses the fundamentals necessary to understand the Barnes-Hut

method. Related works are described in Section 3. Our MPI parallel

approaches will be presented in Section 4. The results and discus-

sions about the experiments will be presented in Section 5. Finally,

the conclusions and future works are presented in Section 6 and

Section 7, respectively.

2 THE BARNES-HUT METHOD

The Barnes-Hut method [2] makes use of an octree to partition the

space according to the position of the bodies. Let ; be the length

of the (cubic) cell, 3 the distance between the object and the cell’s

barycenter andX the distance between the cell’s center and barycen-

ter. Let also \ be the opening angle parameter. If 3 ≥ ;

\
+ X then

the object and the cell are considered to be sufficiently apart: in this

∗Both authors contributed equally to this research.
†Both authors contributed equally to this research.

case the barycenter of the objects within the cell is used to compute

the total force on the object, otherwise the cell is traversed recur-

sively and each of the cells contained within it is tested, eventually

using the bodies within them to compute the force. A simpler ver-

sion of the aforementioned equation can be used which does not

take into consideration X . In that case the opening criterion can be

simplified as 32 ≥ ;
2

\ 2 which makes use of no square roots, thus

driving down the computational cost. By taking \ = 0 all the cells

are open, thus obtaining the same results as in the quadratic ver-

sion. The cost for a tree-based method is $ (= log=).

3 RELATED WORKS

Efficient methods were developed in [4] to generate and traverse

pointer-based octrees inGPUs in BHgravitational simulations. The

performance of this code was analyzed by [14], including compar-

isons with codes written for multicore CPUs. Another simulator

which is run in GPUs was presented by [3]. This code uses a sparse,

pointer-based octree, but with a different structure. The trees are

generated and traversed in pre-order. The bodies are ordered ac-

cording to their Morton keys. This and the following stages where

there exist data transfers associated to the reordering of the inter-

nal nodes uses approximately 66% of all the time devoted to the

generation of the tree. A possible advantage of ordering the leaves

according to their Morton order is that the efficiency of the cache

is improved during the tree traversal.

The use of implicit octrees during the traversal phase in multi-

core CPUs was presented in [6].

The use of parallelism using SIMD/AVX2 vectorization was ex-

plored in several works which involve the =-body problem and

tree-traversals [13], [8], [1], specially where there were direct com-

putations of gravitational forces. Such is the case of [7] which uses

the dual tree method and that does not use intrinsic SIMD instruc-

tions directly, leaving the work of vectorization to the compiler.

This is possible mainly because in these methods the interactions

are of the cell-cell (C-C) type, which are easier to deal with with

automatic vectorization. C-C interactions are equivalent to apply-

ing the direct method between bodies which are contained in the

cells and, at this point, becomes a regular computation pattern.

In this work we study several MPI parallel variants of the BH

method which in future implementations could be combined with

the techniques described in this section to further accelerate the

Barnes-Hut method in multicore and CPU/GPU clusters.

4 MPI PARALLEL BARNES-HUT VARIANTS

In thiswork some variants of the Barnes-Hutmethod are presented,

all of which use the Message Passing Interface (MPI) to distribute

the workload. Sparse (that is, pointer-based) octrees are used in all

cases. With respect to the octree proper, two variants were consid-

ered: Full octree (each node builds the octree with all of the bodies)

 
 

XIV Computer on the Beach 
30 de Março a 01 de Abril de 2023, Florianópolis, SC, Brasil 

 

 

459

https://orcid.org/0000-0003-0146-6120
https://orcid.org/0000-0002-2282-0398


Morante and Zola.

and partial octree (each node builds the octree with part of the bod-

ies). With respect to the workload, two variants were also consid-

ered: Static load (which each node computes the forces on a fixed

range of bodies and said range depends solely on the node’s rank

and it is the same for all the steps of the simulation) and dynamic

load (each node computes the forces on a range of bodies which

varies as the simulation advances).

4.1 Full octree

At the beginning of each simulation step the bodies are sorted ac-

cording to their Morton keys. Each working node builds the octree

with all the bodies and computes the forces between part of the

bodies and the octree. In the static variant, after the octree is built,

the forces are computed on a range of the bodies. The range de-

pends solely on the rank of the node. In the dynamic variant the

master-slave paradigm is used (thus, to be compared to the rest of

the methods, there needs to be an extra node). The master node

sends a range (given by two indices) to each slave node, which

computes the forces between the bodies in said range with the oc-

tree. When finished, the slave asks for more bodies. This process

is repeated until all the bodies are processed by one of the slave

nodes.

4.2 Partial octree

The variants where a partial octree is built need less memory at

any given point in time than the full octree versions, which makes

them suitable in memory-constrained situations, or simply when

the number of bodies is too high. At the beginning of each simula-

tion step the bodies are sorted according to their Morton keys. The

bodies are then scattered among the nodes (which are organized

in a ring), along with the limits of the space. Each node builds an

octree with the received bodies and limits. The rest of the sim-

ulation step is divided in as many phases as nodes are. In each

phase the node computes the forces that the bodies in its octree

exert on a number of bodies. Afterwards, the bodies and the par-

tial forces computed are sent to the next node in the ring. During

the first phase, the node computes the forces between the bodies

with which the octree was created. At the end of the last phase

each node receives the bodies to it originally allotted and their cor-

responding, fully computed, forces. In the dynamic variant, after

each simulation step, in order to make the times spent by each

node more similar to each other’s, the loads may need to be redis-

tributed. This redistribution should take place before each simula-

tion step. For the first simulation step all the times could be set to

a given number, say, one. Thus initially all nodes receive the same

number of bodies. In practice, it is noted that after some simulation

steps it is better to make the load of all the nodes the same again,

at least when using several nodes in the same computer.

4.3 Costzones

In order to lower the time needed to complete a step of the simula-

tion a strategy called costzones can be used [11]. For each body, dur-

ing the force-computation phase, a counter is incremented when-

ever a force is effectively computed (be it with a barycenter or di-

rectly with another body). For the next time step each process will

deal with a range of objects such that the total cost in every range

(that is, the number of interactions computed) is approximately

the same, the rationale being that the positions of the bodies do

not change by much between time steps.

5 RESULTS

The code was implemented as a number of C++ template classes.

To obtain the following results single-precision floats were used.

The experiments were performed on a single computer with an In-

tel Xeon Silver 4314 CPU @ 2.40GHz processor with 16 physical

cores, 32GB of RAM, running Ubuntu 20.04.3 LTS. The opening pa-

rameter was set to \ = 0.5. One million objects following a Plum-

mer distribution [10] were simulated. In Figure 1 the time needed

for each of the tasks performed during the first step of the simula-

tion is represented for each of the variants developed, the number

of working MPI processes being 16. Notice how the variants which

employ a full octree are faster, and of these, the one with dynamic

allocation of work is the fastest. The largest amount of time is de-

voted to the calculation of the forces, therefore this must be the

focus of attention in the future to drive down the cost of these

variants. In the plots corresponding to the variants with partial oc-

trees, the white regions of the bar plots correspond to the stages in

which MPI communications occur. Due to the high number of mes-

sages exchanged between the nodes and the fact that each node

needs the incomplete calculations performed by the previous node

to carry on its own computations, these variants are very sensible

to delays from any particular node. The speedups related to each

variant for the first step of the simulation are represented in Fig-

ure 2. The trend of the full octree variants’ speedups, although in-

creasing sublinearly, indicates that a plateau has not been reached

yet. Given more nodes, therefore, it is expected that the speedups

will still increase. The partial variants’ parallel speedups are infe-

rior. These variants also present poorer performance with respect

to the full variants. The effect of using costzones to ameliorate the

performance is small in any given time step, but the cumulative re-

sult can be quite significant, as seen in Figure 3. The dynamic full

octree variant still outperforms the full octree variant modified to

use costzones, but this could change in a real CPU cluster.

6 CONCLUSIONS

Several variants of the Barnes-Hut method for solving the =-body

problem were implemented to distribute the workload MPI was

used. We have analyzed our implementations in a modern multi-

core CPU. Future applications of our parallel/distributed methods

could be combined with other state of the art techniques to further

accelerate the Barnes-Hutmethod inmulticore and CPU/GPU clus-

ters. In the full octree variants the largest amount of time is devoted

to the computation of the force, while in the partial octree variants

the largest amount of time is devoted to communications between

the participant nodes. The dynamic full octree variant outperforms

all the other variants and shows great promise if deployed in an

heterogeneous network.

7 FUTUREWORK

To improve the cache locality an implicit octree, as described in [6],

will be used. This octree is laid out as an array: it is expected that

the lack of pointers and the contiguity of memory will improve the

 
 

XIV Computer on the Beach 
30 de Março a 01 de Abril de 2023, Florianópolis, SC, Brasil 

 

 

460



MPI Parallel Barnes-Hut variants

Sort

Build octree

Forces

Update

Gather

Node rank

T
im

e
 (

s)

Full tree

1 2 3 4 5 6 7 8
0

1

2

3

4

5

Node rank

T
im

e
 (

s)

Dynamic full tree

1 2 3 4 5 6 7 8
0

1

2

3

4

5

Sort

Build octree

Forces/Update

Send/Recv

Gather

Build partial octree

Force 0

Send/recv 0

Force 1

Send/recv 1

Force 2

Send/recv 2

Force 3

Send/recv 3

Force 4

Send/recv 4

Force 5

Send/recv 5

Force 6

Send/recv 6

Force 7

Send/recv 7

Update

Gather

Node rank

T
im

e
 (

s)

Partial tree

1 2 3 4 5 6 7 8
0

2

4

6

8

10

Build partial octree

Force 0

Send/recv 0

Force 1

Send/recv 1

Force 2

Send/recv 2

Force 3

Send/recv 3

Force 4

Send/recv 4

Force 5

Send/recv 5

Force 6

Send/recv 6

Force 7

Send/recv 7

Update

Gather

Node rank

T
im

e
 (

s)

Dynamic partial tree

1 2 3 4 5 6 7 8
0

2

4

6

8

10

Figure 1: Time consumption for the first step of the simula-

tion, 8 working MPI processes, 106 objects.

1 2 4 8
1

2

3

4

5

6
Full tree

S
pe

ed
up

Processes
1 2 4 8

5

10

15

20

25

30

35

T
im

e 
(s

)

2 3 5 9
1

2

3

4

5

6

7

Dynamic full tree

S
pe

ed
up

Processes
2 3 5 9

5

10

15

20

25

30

35

T
im

e 
(s

)

1 2 4 8
1

1.5

2

2.5

3

3.5

Partial tree

S
pe

ed
up

Processes
1 2 4 8

10

15

20

25

30

35

T
im

e 
(s

)

1 2 4 8
1

1.5

2

2.5

3

3.5

Dynamic partial tree

S
pe

ed
up

Processes
1 2 4 8

10

15

20

25

30

35

T
im

e 
(s

)

Figure 2: Speedups for 2, 4 and 8workingMPI processeswith

respect to a single working process for the first step of the

simulation, 106 objects.

20 40 60 80 100
3.2

3.4

3.6

3.8

4

4.2

4.4

Time step

T
im

e 
(s

)

Time for each step

Full tree, costzones: no

Full tree, costzones: yes

Dynamic full tree

20 40 60 80 100
0

100

200

300

400

Time step

T
im

e 
(s

)

Cumulative time for all the simulation

Full tree, costzones: no

Full tree, costzones: yes

Dynamic full tree

Figure 3: Impact of the use of costzones. Left: Individual step

times. Right: Cumulative time. Full octree method, 100 time

steps, 106 objects, 16 working MPI processes.

number of cache hits. A real cluster will be used, thus each pro-

cess will further parallelize the computations by using OpenMP.

Whether the behavior observed in the experiments described in

Section 5 would be replicated in a real cluster or not will be ad-

dressed in future works. Although speedup improvements in the

partial octree variants mainly depend on optimizations to be fur-

ther investigated in the communication patterns to implement the

workload distribution, we also expect that the use of implicit oc-

trees can also benefit these variants to some extent, as the use of

this method can possibly accelerate traversal time in the partial

tree sections at the nodes.

8 ACKNOWLEDGMENTS

This study was financed in part by the Coordenação de Aperfeiçoa-

mento de Pessoal de Nível Superior-Brasil (CAPES)-Finance Code

001.

REFERENCES
[1] Nitin Arora, Aashay Shringarpure, and Richard W. Vuduc. 2009. Direct # -body

Kernels for Multicore Platforms. In ICPP 2009, International Conference on Par-
allel Processing, Vienna, Austria, 22-25 September 2009. 379–387.

[2] J. E. Barnes and P. Hut. 1986. A hierarchical$ (= log=) force calculation algo-
rithm. Nature 324 (1986), 446.

[3] Jeroen Bédorf, Evghenii Gaburov, and Simon Portegies Zwart. 2012. A sparse
octree gravitational N-body code that runs entirely on the GPU processor. J.
Comput. Phys. 231, 7 (April 2012), 2825–2839.

[4] Martin Burtscher and Keshav Pingali. 2011. Chapter 6 - An Efficient CUDA Im-
plementation of the Tree-Based Barnes Hut n-Body Algorithm. In GPU Comput-
ing Gems Emerald Edition, Wen-mei W. Hwu (Ed.). Morgan Kaufmann, Boston,
75 – 92.

[5] David M. Chan, Roshan Rao, Forrest Huang, and John F. Canny. 2018. t-SNE-
CUDA: GPU-Accelerated t-SNE and its Applications to Modern Data. Proceed-
ings - 2018 30th International Symposium on Computer Architecture and High
Performance Computing, SBAC-PAD 2018 (2018), 330–338.

[6] Armando Delgado, Rodrigo Morante Blanco, and Wagner Nunan Zola. 2019.
Caminhamento Paralelo Barnes-Hut comVetorizaçãoAVX2. InAnais do XX Sim-
pósio em Sistemas Computacionais de Alto Desempenho (Campo Grande). SBC,
Porto Alegre, RS, Brasil, 454–461. https://doi.org/10.5753/wscad.2019.8691

[7] Benoit Lange and Pierre Fortin. 2014. Parallel Dual Tree Traversal onMulti-core
and Many-core Architectures for Astrophysical N-body Simulations. In Euro-
Par 2014: Proceedings of the 20th International European Conference on Parallel
and Distributed Computing. 716–727.

[8] Rainer Spurzem Long Wang et al. 2015. NBODY6++GPU: ready for the gravita-
tional million-body problem. Monthly Notices of the Royal Astronomical Society
450, 4 (2015), 4070–4080.

[9] Bruno Henrique Meyer, Aurora Trinidad Ramirez Pozo, and Wagner M
Nunan Zola. 2021. Improving Barnes-Hut t-SNE Algorithm in Modern GPU
Architectures with Random Forest KNN and Simulated Wide-Warp. ACM Jour-
nal on Emerging Technologies in Computing Systems (JETC) 17, 4 (2021), 1–26.

[10] H. C. Plummer. 1911. On the Problem of Distribution in Globular Star Clusters:
(Plate 8.). Monthly Notices of the Royal Astronomical Society 71, 5 (03 1911), 460–
470.

[11] J.P. Singh, C. Holt, T. Totsuka, A. Gupta, and J. Hennessy. 1995. Load Balancing
and Data Locality in Adaptive Hierarchical # -Body Methods: Barnes-Hut, Fast
Multipole, and Radiosity. J. Parallel and Distrib. Comput. 27, 2 (1995), 118–141.

[12] Laurens van derMaaten. 2014. Accelerating t-SNE using Tree-BasedAlgorithms.
Journal of Machine Learning Research 15, 93 (2014), 3221–3245.

[13] Rio Yokota. 2012. An FMM Based on Dual Tree Traversal for Many-core Archi-
tectures. CoRR abs/1209.3516 (2012).

[14] Ivan Zecena, Martin Burtscher, Tongdan Jin, and Ziliang Zong. 2013. Evaluating
the Performance and Energy Efficiency of N-Body Codes on Multi-Core CPUs
and GPUs. In 32nd IEEE International Performance Computing and Communica-
tions Conference (IPCCC’13).

[15] Wenbo Zhu, Zachary T. Webb, Kaitian Mao, and José Romagnoli. 2019. A Deep
Learning Approach for Process Data Visualization Using t-Distributed Stochas-
tic Neighbor Embedding. Industrial & Engineering Chemistry Research 58, 22
(2019), 9564–9575.

 
 

XIV Computer on the Beach 
30 de Março a 01 de Abril de 2023, Florianópolis, SC, Brasil 

 

 

461

https://doi.org/10.5753/wscad.2019.8691

