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ABSTRACT
Precision agriculture has emerged as a transformative approach
to optimizing crop production and resource management in the
agricultural sector. It leverages advanced technologies like remote
sensing, geographic information systems, and decision support
tools. In recent years, machine learning has become an integral
component of precision agriculture, providing the ability to analyze
large volumes of complex data and generate valuable insights for
more informed decision-making. This study benchmarked different
supervised algorithms in an image classification dataset of coffee
and non-coffee areas. Algorithms were comprehensively evaluated
and analyzed, with traditional machine learning models trained
in three versions of the original dataset, and compared with two
Deep Learning algorithms. The experimental results were promis-
ing, showing that SVMs and RF algorithms can provide accurate
predictions for most images with average accuracy values above
0.8. The RF algorithm, in specific, statistically outperformed all the
other traditional algorithms. Deep Learning baselines were slightly
more accurate but had a higher computation cost in the training
step. VGG16 was the best-evaluated model, followed by the simple
CNN and RF, with no statistical difference between the last two.
Results suggest that there is still scope for further improvement in
using the traditional algorithms.
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1 INTRODUCTION
Precision agriculture has emerged as a transformative approach
to optimizing crop production and resource management in the
agricultural sector [1]. It leverages advanced technologies, such
as remote sensing, geographic information systems, and decision
support tools, to facilitate the development of site-specific farming
practices that maximize yield while minimizing input costs and
environmental impacts [2]. In recent years, Machine Learning (ML)
has become an integral component of precision agriculture, pro-
viding the ability to analyze large volumes of complex data and
generate valuable insights for more informed decision-making [3].

∗Both authors contributed equally to the paper

Remote sensing is a key aspect of precision agriculture which
involves acquiring data about the Earth’s surface through satellite
or airborne sensors [4]. This technology enables the monitoring of
agricultural fields at various spatial, temporal, and spectral resolu-
tions, allowing for the identification of crop types, growth stages,
and stress conditions [5]. As a result, remote sensing data can be
harnessed to inform crop management strategies, such as irriga-
tion scheduling, nutrient application, and pest control, which are
essential for maintaining high productivity and environmental sus-
tainability [6].

In this sense, ML offers powerful techniques for analyzing remote
sensing data [7]. By employing algorithms that automatically learn
and adapt from data, ML models can identify patterns, make predic-
tions, and uncover hidden relationships within complex datasets
[8]. These capabilities have proven particularly useful in image
classification, in which these algorithms are trained to recognize
and categorize objects within images based on their features [9].
The integration of ML with remote sensing data has the potential
to significantly advance the field of precision agriculture [10]. In
particular, image classification techniques can distinguish different
land cover types, such as crop species and growth stages, from
satellite imagery [11]. This information can be utilized by farmers,
agronomists, and other stakeholders to optimize their agricultural
practices and achieve greater efficiency in resource allocation [12].

Considering the literature scenario, there are two types of studies:
“white-box” traditional ML algorithms, requiring a feature engineer-
ing step to provide valuable image descriptors, and “black-box”
Deep Learning [13]. DL models are well-known and widely used
in extracting high-level abstract features. Theoretically, it outper-
forms the traditional ML algorithms but with a higher computation
cost [14]. However, DL performance depends on some assumptions,
especially the data amount used to train the models. The bigger the
dataset, the better will be the induced DL model.

Thus, in this study, we hypothesized that traditional ML algo-
rithms are good alternatives to the DL. DL algorithms were also
considered as baselines to the handcrafted approach. One of the
objectives in this work is to compare these algorithms’ perfor-
mance, robustness, and generalizability to classify satellite images
as coffee or non-coffee areas. The insights gained from this re-
search are expected to contribute to similar problems and further
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investigations on the ongoing development of precision agriculture
technologies. The remainder of this paper is organized as follows:
Section 2 presents some of the necessary concepts about precision
agriculture with ML and describes related work. The experimental
methodology is presented in Section 3. The results are discussed
in Section 4, while the conclusions and final considerations of the
study are presented in Section 5.

2 RELATEDWORKS
Different ML algorithms have been explored to increase efficiency
and productivity in precision agriculture. The growing body of
research shows the promising results of such techniques, mainly
when applied to specific case studies such as coffee crops. In [15],
the authors investigated coffee crops’ spectral analysis and classifi-
cation using Landsat and a topographic-environmental model. They
found that satellite mapping of coffee yielded low classification ac-
curacy. However, when a wider spectrum of bands and ancillary
data was included, the highest overall accuracy is improved to 65%.

Over a decade later, advances in ML technologies were high-
lighted by [16]. The authors proposed a method for classifying and
detecting nutritional deficiencies in coffee plants using image pro-
cessing and Convolutional Neural Networks (CNNs). Their model,
once detecting a deficiency, suggests the appropriate fertilizers.
Their predicted models were trained on images representing eight
types of nutritional deficiencies across four coffee varieties and
obtained high accuracy in detecting these deficiencies.

In [17], the authors evaluated the potential of combining canopy
spectral information with canopy structure features for crop moni-
toring using satellite/unmanned aerial vehicle (UAV) data fusion
and ML. They discovered that combining rich spectral data from
satellite imagerywith detailed canopy structural features fromUAVs
significantly improved biomass estimation, leaf area index (LAI),
and leaf nitrogen concentration. Similar work was done by [18]
in a semiarid area of Morocco. Experimental results demonstrated
that the fusion of different source data significantly improved the
accuracy of crop-type identification.

Lastly, a comprehensive review by [19] highlighted the role of
ML in various aspects of agricultural management, underscoring
its potential in handling the challenges of establishing knowledge-
based farming systems. They identified the prevalence of models
such as Artificial Neural Networks (ANNs), including sub-types like
CNNs and Recurrent Neural Networks (RNNs). Ensemble Learn-
ing (EL) methods and Support Vector Machines (SVMs) were also
widely used. This broad spectrum of methodologies showcases the
adaptability and potential of ML in advancing agricultural practices.

All these studies emphasize the increasing role of ML in agricul-
ture. They demonstrate how this technology and high-resolution
satellite and UAV data can contribute to more precise crop man-
agement and disease detection. They also reveal the potential for
ML to tackle the challenges in the establishment of knowledge-
based farming systems. Given their focus on ML application in
agriculture—particularly in crop management, disease detection,
and remote sensing data—they are relevant to our study and provide
foundational knowledge that could inform our research. Over the
years, the evolution in methodologies and results underlines the

continuing improvement in the field and the potential for further
development.

3 EXPERIMENTAL METHODOLOGY
This section presents the experimental methodology used in the
benchmarking experiments of the ML algorithms. An overview of
the flow of experiments, including sub-steps, is shown in Figure 1.
The following subsections will explain each step in detail.

3.1 Dataset
The dataset used in this paper was the Brazilian Coffee Scenes [20],
which comprises multi-spectral images taken by the SPOT satellites
in 2005. The dataset includes images of four cities in the state of
Minas Gerais: Arceburgo, Guaranésia, Guaxupé, and Monte Santo.
Item 1 in Figure 1 presents a condensed version of the dataset. The
satellite captured a mosaic that was split into 2,876 images of 64x64
pixels each (item 2 in the figure). Every image has three bands
- green, red, and near-infrared. The dataset also includes images
of coffee plants at various ages and states of health. Researchers
labelled the images into two categories: “coffee” and “non-coffee”.
If less than 10% of pixels in an image are composed of coffee plants,
it is classified as “noncoffee”, while images with more than 85% of
pixels with coffee plants are labeled as “coffee”. The data used for
experimentation consists of 1,438 images in each class, so it has
already been balanced.

This dataset was chosen because of its balanced class distribution
and low data preprocessing requirements. This aids in limiting bi-
ases and potential issues associated with imbalanced data, resulting
in accurate and impartial model training, evaluation, and subse-
quent analysis, as well as reducing the possibility of introducing
excessive complexity or potential errors during the preprocess-
ing stage. To extract the band values from the images shown in
item 3 of Figure 1, we utilized the Pillow1 package of the Python
programming language. The resulting array for each image con-
sists of values for the red, green, and infrared bands of every pixel,
generating an array of 12,288 values (64x64x3).

3.2 Data Preprocessing
As the original data are composed of multispectral images, three
different versions of datasets were generated:

• Dataset 1: includes all pixel values of images in the red,
green, and infrared bands;

• Dataset 2: includes the pixel values along with each pixel’s
Normalized Vegetation Index (NDVI), obtained through the
equation (1):

𝑁𝐷𝑉 𝐼 =
𝐼𝑛𝑓 𝑟𝑎𝑟𝑒𝑑 − 𝑟𝑒𝑑

𝑁 𝐼𝑅 + 𝐼𝑛𝑓 𝑟𝑎𝑟𝑒𝑑
(1)

This index helps evaluate the plant’s health by showing the
proportion of reflection of near-infrared waves in relation
to the red band. The higher the NDVI value, the healthier
the plant;

• Dataset 3: condenses the existing information for each
image by including the average values of green, red, and
infrared pixels as well as the average NDVI of the image.

1https://pillow.readthedocs.io/en/stable/index.html
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Figure 1: Methodology for comparing algorithms on identifying coffee plantations.

3.3 ML and DL Algorithms
The algorithms used in our experiments were chosen from related
works and yielded good predictive performance in similar tasks. We
used the following traditional ML algorithms: k-Nearest Neighbors
(kNN), Naïve Bayes (NB), Decision Trees (DTs), Multilayer Percep-
tron (MLP), Support Vector Machines (SVMs) and Random Forest
(RF). Each algorithm has a different inductive bias, resulting in dif-
ferent mappings between image characteristics (band values) and
corresponding classes.

The kNN algorithm categorizes samples based on how close their
descriptors are to the training set. The hyperparameter 𝑘 decides
how many nearby neighbors are taken into account for classifica-
tion. We used the default value of 𝑘 = 5 to calculate the number
of neighbors in the class. The NB algorithm is based on the Bayes
Theorem and conditional probabilities [21]. Its Gaussian version
was explored in the experiments, since it can handle continuous
features, such as the pixel values. Decision Trees (DTs) build hier-
archical models iteratively selecting the most information features
from the feature space. In a tree, each inner node describes a fea-
ture, while the leaves are labelled with the classes. Trees tend to
be simpler and interpretable. A MLP feed-forward artificial neural
network, consisting of fully connected neurons with a nonlinear
activation function, organized in at least three layers. It is widely
applied to solve nonlinear problems by mixing different numbers
of units (neurons) into convex regions in a hyper-space of features.
The SVC is a non-probabilistic linear classifier that separates the
data through decision limits defined by a hyperplane, solving an
optimization problem based on minimizing a risk structure. SVCs
use numerical transformations via kernels to transform nonlinear
hyperspaces into linear hyperspaces. Finally, RF is an ensemble
algorithm which combines several and different DTs generated
by a bootstrap resampling strategy, sampling different subsets of
instances and features. The ensemble prediction is then computed
by the majority voting of the “forest”. All the algorithms were im-
plemented in Python using the Scikit-Learn2 library, with their
correspondent default hyperparameter values.

2https://scikit-learn.org/stable/

We also compared these algorithms with two state-of-the-art
Deep Learning (DL) baselines: a simple Convolution Neural Net-
work (CNN) and the VGG16model [22], extracted from the dataset’s
original paper [23]. In their study, the authors benchmarked several
CNN architectures in Remote Sensing Image datasets. The CNN
baseline would be the simplest architecture designed for image
recognition (lower baseline). At the same time, the VGG16 was the
top-ranked model in several datasets, including the Brazilian Coffee
Scenes dataset (higher baseline). These networks’ architectures are
summarized in Table 1. It is important to mention that the VGG16
model used here was pre-trained in the ImageNet dataset, and only
the dense layers’ weights were trainable in our experiments.

Table 1: DL architectures explored in experiments. Layers’
names follow the Keras nomenclature.

Model Layer Options 𝑓

CNN

Conv2D 32 (3,3) ReLU
maxPooling2D (2,2)
Dropout 0.25
Conv2D 64 (3, 3) ReLU
MaxPooling2D (2,2)
Dropout 0.25
Conv2D 64 (3, 3) ReLU
Flatten - -
Dense 64 ReLU
Dropout 0.5
Dense 1 Sigmoid

VGG16

VGG16 baseModel -
Flatten - -
Dense 4096 ReLU
Dense 1 Sigmoid

3
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3.4 Evaluation and Reproduction of
Experiments

Traditional ML algorithms were trained with preprocessed datasets,
while DLwas fedwith raw images.We split the same images/examples
into training and testing partitions in both cases, ensuring that all
models evaluate the same data. Due to the large number of exam-
ples (2,876), the holdout data separation methodology was chosen,
where 70% of the data was used for training and the remaining 30%
for testing. Furthermore, the experiments were repeated 30 times
using different seed generators. The performance metric used to
evaluate the results was Balanced Accuracy per Class (BAC). The
traditional algorithms were coded in Python using the scikit-learn
library.

The DL algorithms were coded with Keras and TensorFlow, but
running in a CPU environment. They were trained in 100 epochs,
minimizing the binary cross entropy loss function. In a single exe-
cution, a total of 30% of the training data is used as the validation
data.

We empirically defined a batch size equal to 16 and added an early
stop criteria for finishing the training when the validation accuracy
could not increase in 10 successive epochs. The chosen optimizer
was the default choice in Keras (Adam). The complete experimental
setup is detailed in Table 2. The datasets, codes, and experimental
results are publicly available on GitHub https://github.com/ribeiro-
julio/crop-image-classification

4 RESULTS
Figure 2 depicts the experimental results obtained when executing
all the traditional algorithms over all generated datasets. In the
figure, the x-axis lists all the algorithms decreasingly ordered ac-
cording to their balanced accuracy values, while violins show the
performance distribution across 30 different repetitions. In all the
datasets, the higher accuracies were obtained by Support Vector
Machines (SVM) and Random Forest (RF) algorithms. They obtained
accuracy values higher than 0.8 in two datasets, an empirical thresh-
old defined in experiments as reference, and identified by the red
dotted line.

One may note that the obtained results in datasets 1 and 2 were
quite similar. These datasets have quite the same information, with
dataset 2 also including each pixel’s NDVI values. Results sug-
gest that this inclusion did not significantly improve the induced
models. Regarding performance values, we can look closely at the
top-ranked algorithms. SVMs decreased its average accuracy from
dataset 1 to dataset 2 (0.816 and 0.814), while RF slightly increased
(0.811 and 0.823). However, both worsened in dataset 3; they lost
information when the average pixel values were explored as image
descriptors (0.762 and 0.757), respectively. Even though they were
still the best algorithms when compared to the others, since no
other algorithm obtained accurate results.

We applied the Wilcoxon paired-test [24] with 𝛼 = 0.05 to com-
pare SVMs and RF performances in datasets 1 and 2. These results
indicated that RF induced in dataset 2 is statistically better than any
other algorithm in any dataset. Thus, we provided further analysis
considering just the predictions obtained in dataset 2.

4.1 Comparison with DL models
Figure 3a summarizes the results of the comparison between DL
and traditional ML algorithms. Algorithms are decreasingly ordered
on the x-axis according to their BAC average values. VGG16 was
the best (0.834), followed by CNN (0.831), RF (0.821) and SVM
(0.814). All the algorithms were executed in the same training and
testing sets over 30 different repetitions. Thus, we also applied
the Wilcoxon paired test to compare their performances. VGG is
statistically better than RF and SVM. RF has no statistical difference
with the CNN model, while SVM is statistically worse than any
other algorithm.

The analysis can be complemented with the Figure 3b. It presents
the distribution of epochs required by each DL model to be trained.
None required the limit of epochs defined as 100 epochs. On average,
CNN trained in 23 epochs, while VGG16 required 13. This behavior
is expected since VGG16 was pre-trained in the ImageNet dataset
and thus acted as a better feature descriptor. However, it does
not reflect in terms of performance, which suggests that original
images are “simple”. The images do not have high-level features
in general, as there is no level of object detailing resulted from the
images resolution and which consequently does not provide class
distinction. It would be reasonable to argue that no shapes, textures,
or complex objects are being identified; just the pixel values are
used to make predictions. In the same direction, it is a positive
aspect in favor of the RF, achieving accurate values and requiring
much less time to obtain predictions.

4.2 Obtained predictions
Figure 4 details the algorithms’ predictions in dataset 2. All the
algorithms are listed on the y-axis, while the individual images are
projected on the x-axis. The “Y” row shows the actual target values
(classes). Whenever a row contains a cell with a color different than
this real class (Y row), it shows a misclassification.

Different algorithms presented different patterns, which is ex-
pected since they follow different learning biases. All the algorithms
performed quite similarly, predicting the “non-coffee” regions (gray
predictions), alternating the misclassifications between different
images. Conversely, DL algorithms (CNN, VGG16) were the most
accurate models in the coffee class. We identified 97 images by all
the top algorithms: 34 images of non-coffee regions and 63 of coffee.
Figure 5 shows these misclassified images: the first line contains
examples of “coffee” images, while the second one depicts examples
of “non-coffee” images.

Analyzing the coffee images, it is expected they present more
green pixels, indicating healthy plants. Figure 5 a) and b) show two
examples following this property, and it might be the case that algo-
rithms did not perform well in recognizing healthy regions/plants.
However, Sub-figures 5 c) and d) are ‘confusing’ because there have
more red pixels than green pixels. A possibility is that they contain
some satellite capture error due to noise or atmospheric effects,
which justify misclassifications. In the non-coffee images, the op-
posite is desired: images should present lower green values than
red values. It can be identified in sub-figures 5 e) to h). On the other
hand, some of them (g and h) seem to present a certain level of
green values that might confuse the algorithm-defined decision
boundary.

4
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Table 2: Complete experimental setup.

Element Option R/Python package

Traditional ML algorithms

k-Nearest Neighbors (kNN)

Python: scikit-learn

Naïve Bayes (NB)
Decision Trees (DT)
Support Vector Machines (SVMs)
Random Forest (RF)
Multilayer Perceptron (MLP)

Resampling
Holdout

Python:scikit-learnTraining set = 70%
Testing set = 30%

Evaluation measure Balanced per Class Accuracy Python: scikit-learn, Keras

DL algorithms Convolutional Neural Network (CNN)
Python: KerasVGG16

DL setup

epochs = 100

Python: Keras

validation split = 0.3
batch size = 16
optimizer = Adam
optimized measure = Binary cross entropy
early stop criteria = 10 epochs (val accuracy)

Repetitions 30 times with different seeds -seeds = {0, . . . , 29}

Statistical Evaluation Wilcoxon
R: stats

𝛼 = 0.05
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Figure 2: Overall results obtained using three different datasets for the coffee x non-coffee problem.

Another hypothesis to explain the misclassifications is that these
images present the same pixel distribution in the three channels;
thus, algorithms cannot differentiate them. Figure 6 presents the
pixel distribution of the three image channels (red, green, near-
infrared) for the misclassified images. The figure shows that green
and near-infrared distributions differ between classes: coffee im-
ages present higher values of green and near-infrared pixels and

non-coffee lower ones. However, red values present a similar distri-
bution, which makes our hypothesis partially true. It may be the
case that these values are making it difficult to separate the classes
and emphasize the need for more robust feature descriptors would
have to solve such misclassification and issues.

5
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(a) Violin plots of top-ranked ML and DL and models.
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Figure 3: Comparison of DL models with top-ranked traditional ML algorithms.
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Figure 4: Obtained predictions by the top-ranked learners (DL and traditional ML algorithms).

5 CONCLUSIONS
This study compares different ML and DL algorithms in a coffee
and non-coffee image classification dataset. The comparison among
traditional ML algorithms, including SVMs, RF, NB, kNN, and DTs
revealed that SVMs and RF algorithms performed better, with an
average balanced accuracy greater than 0.8. The Wilcoxon test cor-
roborated this finding, demonstrating that RF is statistically better
to the other algorithms. The second preprocessed dataset produced
the best results, demonstrating that the NDVI index affected the
classification.

DL baselines (VGG16 and CNN) were slightly better to RF and
SVMs. Both obtained BAC values higher than 0.83. The VGG16
model required fewer epochs to train but spent more computational
time on this task due to the model’s higher number of parameters
(network weights). However, there was no statistical difference be-
tween them. Compared to the traditional ML algorithms, VGG was
statistically better to both (RF and SVMs), but therewas no statistical

difference between RF and CNN. VGG not being significantly better
than a shallower CNN which reinforces that no high-level features
are being discernible for class distinction, meaning that, increasing
the complexity of the network or another algorithm boundary will
not necessarily increase the ability of these algorithms to solve the
problem.

Analyzing their predictions, it was possible to identify that coffee
images were more challenging to categorize than non-coffee images.
Coffee images should have more green pixels, indicating healthy
plants, and non-coffee images should have more red pixels, as the
channels used are around reddish channels, it is expected that the
non-coffee class would be able to better utilize channel variations.
Some coffee images had a high proportion of red pixels, and some
non-coffee images had a high proportion of green pixels, resulting
in misclassifications. This could have happened due to noise or
atmospheric effects during the image extraction. Additionally, it was
found that the red pixel distribution on these images is comparable

6
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(a) Arceburgo-
T1536-B1600-L4992-
R5056

(b) Arceburgo-
T2240-B2304-L4992-
R5056

(c) Guaxupe-T960-
B1024-L1536-
R1600

(d) Montesanto-
T3392-B3456-L10496-
R10560

(e) Guaranesia-
T5632-B5696-L3200-
R3264

(f) Guaxupe-T7424-
B7488-L2240-
R2304

(g) Guaranesia-
T3200-B3264-L4288-
R4352

(h) Guaranesia-
T4288-B4352-L1664-
R1728

Figure 5: Examples of misclassified images by all the algorithms in experiments. The first row presents images with the label
value as “coffee”, while the second presents “non-coffee” images.

R G NI

coffee
noncoffee

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0

5000

10000

15000

0

2500

5000

7500

10000C
ou

nt

channel

R

G

NI

Figure 6: Channels histogram of misclassified images.

in coffee and non-coffee classes, making it challenging for the
algorithms to categorize them.

The dataset has only images with the three bands (red, green,
and near-infrared) available. Multi-spectral images typically include
additional bands, such as red edge and near-infrared, in addition to
the primary bands (red, green, and blue), not only in the sense of
having more channel options, but also by increasing the number,
not just three like RGB images or those used in this work. This
work may have been enhanced if the images had more bands than

provided. These additional bands would enable further analysis of
the inaccurately classified images. Furthermore, this research can be
extended in four different ways: (1) increasing the amount of data by
extracting additional image characteristics, such as texture; (2) using
filters to pre-process the images before feeding the algorithms; (3)
using other agricultural indexes to test their impact on classification;
and (4) experimenting with different deep learning algorithms.

7
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