Computação Física, Legos Mindstorms, Java e *framework* leJOS como auxílio didático no ensino de Programação

Rudinei L. Santos¹, Herculano De Biasi¹, Nilton K. G. Suzuki¹, Luis E. Fritsch¹

¹Universidade do Contestado (UnC) Engenharia de Controle e Automação – Mecatrônica CEP: 89.520-000 – Curitibanos – SC – Brasil

engenheiro.rudy@hotmail.com, herculano.debiasi@gmail.com, nkazuo@gmail.com, luisexperton@hotmail.com

Abstract. This paper describes the development of a methodology intended to assist the learning process of Algorithms, Programming Languages, and Robotics. This methodology applies concepts of Physical Computing and bring together the Lego Mindstorms NXT®, from The Lego Group Company, the Java programming language, and the leJOS framework. Several experiments have been developed and documented, in order to gradually teach programming concepts to the students.

Introdução

O presente estudo tem como objetivo desenvolver uma metodologia e material didático que utilize o produto Lego Mindstorms NXT ao processo de ensino-aprendizagem das disciplinas de Algoritmos, Linguagem de Programação e Robótica para aplicação nos cursos de Engenharia de Controle e Automação da UnC, campus de Curitibanos. A metodologia utiliza conceitos de Computação Física com o intuito de aumentar o aprendizado e fixação dos conceitos por parte dos alunos.

Computação Física é a construção de sistemas físicos interativos através do uso de software e hardware capaz de sentir e responder ao mundo analógico [Igoe 2012]. A aplicação deste conceito torna o aprendizado mais motivador, pois o aluno realiza experimentos interativos, que se mexem, produzem sons e reagem ao meio em que estão. Isto contrasta com a metodologia atual de ensino de programação, na qual o aluno apenas vê mensagens na tela do computador, muitas vezes enigmáticas. A aplicação destes conceitos também permite a melhor verificação, por parte do aluno, das relações de causa-efeito produzidas pela sua programação.

Materiais e Métodos

LEGO Mindstorms NXT é uma linha do brinquedo LEGO, lançada em 2006, voltada para a educação tecnológica [Wikipédia 2012]. O modelo NTX 2.0 é equipado com um processador Atmel 32-bit ARM, IDE próprio, três saídas digitais, quatro portas de entrada (uma IEC 61158, tipo 4), três servos-motores com *encoder* acoplado, sensores de ultrassom, luz, cor e contato, permitindo a criação, programação e montagem de robôs com noções de distância, capazes de reagir a movimentos, ruídos e cores, e de executar movimentos com razoável grau de precisão. A Figura 1a mostra o robô

humanoide padrão do NXT, que caminha e emite sons, enquanto que a Figura 2b exibe um robô desenvolvido no âmbito deste projeto, capaz de desviar de obstáculos.

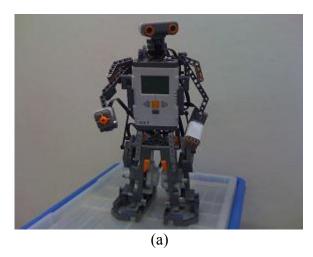


Figura 1. (a) Robô Humanoide NXT; (b) Carrinho que desvia de obstáculos

A utilização do IDE padrão do Lego é baseada em blocos e fluxogramas, não sendo poderosa e flexível o suficiente para aplicação no curso de Mecatrônica, pois não permite a integração do software e hardware com outros componentes e programas. Para solucionar estes problemas, é usada então a linguagem de programação Java, em conjunto com o *framework open-source* leJOS, e a IDE NetBeans. Esta solução torna o Lego uma plataforma mais aberta. leJOS substitui o firmware padrão do módulo de controle (RCX), por um outro que inclui uma máquina virtual Java, de apenas 32 KB [leJOS 2012]. Deste modo, o Lego passa a permitir que se possa programar os robôs utilizando a linguagem Java. leJOS fornece uma API para programação do Lego. A API segue o padrão de programação orientado a objetos do Java. Após a troca do *firmware*, o IDE padrão do Lego não pode mais ser utilizado para desenvolver os programas.

O material produzido ensina os procedimentos de instalação da máquina virtual Java em Linux e Windows, do IDE NetBeans e firmware NXJ. Demonstra também os princípios básicos da programação de robôs Legos utilizando a linguagem de programação Java. Trabalhando-se com este equipamento nota-se que o princípio de programação segue o mesmo de robôs industriais, onde existe uma tarefa a ser realizada e o programador deve saber como realizá-la da melhor forma possível. O IDE NetBeans é usado para a programação Java por possuir uma interface de entendimento mais fácil para os iniciantes em programação. Através de fotos buscou-se mostrar a forma correta de montagem dos robôs Legos, o que se mostrou inicialmente um primeiro obstáculo a ser vencido. A Figura 2 mostra um exemplo de programação em Java capaz de movimentar um robô humanoide mostrado na Figura 1a.

```
//Declaracao da classe HumanoideNXT
public class HumanoideNXT (

// Declaracao da classe main
public static void main(String[] args) throws InterruptedException (

// Crio os Objeto ss, bs, ls, us (poderia ser qualquer nome)

// Digo também que esses Objetos existem no mundo real

// quando estão ligados as portas 1, 2, 3 e 4 respectivamente

// da Central de Controle

SoundSensor ss = new SoundSensor(SensorPort.S1);
TouchSensor bs = new TouchSensor(SensorPort.S2);
LightSensor ls = new LightSensor(SensorPort.S3);
UltrasonicSensor us = new UltrasonicSensor(SensorPort.S4);

int som; // crio uma variável som do tipo inteiro
int luz; // crio uma variável luz do tipo inteiro
int distancia; // crio uma variável distancia do tipo inteiro
int distancia; // crio uma variável distancia do tipo inteiro
```

Figura 2. Exemplo de programação

Resultados

O material desenvolvido foi trabalhado em uma disciplina de Robótica do curso de Engenharia de Controle e Automação. A avaliação qualitativa, realizada pelo professor da disciplina, comprovou a melhora na aprendizagem e fixação dos conteúdos de programação. O contato inicial com os robôs Legos e sua programação facilitou o posterior trabalho com robôs industriais e equipamentos robóticos desenvolvidos com a plataforma Arduino e Modelix, pois se passa a conhecer vários aspectos relevantes, como montagem, programação, restrições físicas e mecânicas, entre outras.

Considerações Finais

A metodologia continua a ser melhorada de forma a, progressivamente, fazer a transição do aluno a partir do ambiente acadêmico para o meio industrial. Experimentos estão sendo realizados com a plataforma Arduino e com a placa Bricktronics *shield* [Bricktronics 2012], a qual permite uma fácil integração entre o Lego e o Arduino. Em seguida, o conhecimento adquirido com o Arduino pode ser utilizado na construção de equipamentos mais avançados com a plataforma Modelix, cuja placa de controle (Modelixino) é compatível com o Arduino.

Projetos de extensão em escolas de ensino médio também estão sendo planejados.

Referências

Bricktronics Shield Kit. In: Wayne and Layne Store. Disponível em http://store.wayne-andlayne.com/products/bricktronics-shield-kit.html. Acesso em 21 de fev. de 2013.

Igoe, T. e O'Sullivan, D. (2004) "Physical Computing: Sensing and Controlling the Physical World with Computers". Premier Press.

Website leJOS. (2012), http://lejos.source-forge.net, Setembro.