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INTRODUCTION

Our understanding of the dynamics of wave
generation and growth have improved substantially over
the last few decades but there are still many unknowns
in the fundamental processes which have been left to
be elucidated. The better estimation through numerical
simulations of the wave field using past forcing winds to
compute the climatologies (hindcasts) or for wave
forecasts has practical importance such as for ship
routing, offshore activities, coastal management and
fisheries among several others.

The interest in this field of research is, however,
not only limited to the economic and engineering
concerns. Wind waves are the interface between the
ocean and the atmosphere and are therefore closely
connected to the exchange processes like for example
transfer of mechanical energy, momentum, sensible and
latent heat and gases (Donelan, 1990, Komen et al.,
1994, Csanady, 2001). Energy is transferred from the
atmosphere to the ocean driving the circulation of the
upper ocean. Energy from the ocean, on the other hand,

is fed back to the atmosphere affecting the atmospheric
circulation and the climate. The wind drag coefficient is
affected by the wave age and by the wave spectrum but
there is still, however, considerable uncertainty on how
to model its dependency on the sea state. A better
description of air-sea interaction and its consequences,
for example on the world climate, has to take into account
the role played by the waves on the fluxes across the
interface. The studies using sophisticated numerical
climate simulations considering the coupling between
ocean and atmosphere and its interface using wave
models are increasingly expanding. This is a field of
exciting possibilities and several forecasting centers are
investigating the feasibility of combining such models.

The high spatial and temporal variability of surface
processes needs to be properly considered in any
investigation of the dynamics of wind waves. High
resolution models combined with detailed spectral
satellite data seem to offer the best opportunity to
provide global analysis and predictions. Since the advent
of satellite oceanography the field of wave data
assimilation has experienced a fast development. So
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far only Significant Wave Height (SWH) from altimeters
have been assimilated by operational forecasting centers
but with the improvement of the schemes for the retrieval
of the wave spectrum from Synthetic Aperture Radar
(SAR) images the natural trend is that this picture is
going to change (see for example Violante-Carvalho &
Robinson 2004, Violante-Carvalho et al. 2005). The
cumbersome task of redistributing the energy from an
integral parameter like SWH over the spectrum seems
pointless since reliable global estimates of the full
directional spectrum are becoming available. The
combination of measurements and numerical
estimations can be translated into better and more
physically consistent model parameterizations. Inverse
modeling techniques consist of estimating optimal
parameters that minimize a function describing the
difference between observed and estimated conditions,
therefore improving the model parameters. Such
approaches in oceanography have been already pursued
(see the examples listed in Wunsch, 1996), although
its application in wave modeling is in its infancy (de las
Heras et al. 1994, Hersbach 1998).

Over the last 30 years major research efforts have
been made and we now have suitable parameterizations
of the source terms that describe the dynamics of wind
waves. This has been reflected in the development of
advanced third generation wave models such as WAM,
WaveWatch and SWAN that compute the directional
spectrum by direct integration of the energy balance
equation based on the structure of the terms that
describe the input of energy from the wind, the nonlinear
interaction among wave components and the dissipation
of energy due to whitecapping. Although their
performances, specially of the WAM model, have already
been demonstrated by several validation tests (see for
example the comparisons of the WAM estimates
against buoy and satellite measurements in Komen
et al. 1994) these wave models have room for
improvement where their main deficiencies lay in: 1.
the numerical resolution; 2. the numerics, such as the
propagation schemes and the integration of the nonlinear
interactions; 3. the physical representation of the terms
of input and dissipation of energy.

The aim of this work is to investigate the
performance of the WAM, the most widely used and
tested model, in estimating the mean frequency of wind
waves through intercomparisons with heavy-pitch-roll
buoy data acquired in deep tropical water in the South
Atlantic. Most of the validation exercises carried out so
far for the WAM have focused on the performance of the
model in computing a single parameter, that is SWH,
comparing its value against satellite altimeter data due
to the lack of detailed spectral measurements available.
However the use of an integral parameter like SWH to
perform a validation test does not take advantage of the

detailed spectral information yielded by a third generation
model. Moreover the wind waves measured by buoys
can assess the quality of the model estimates in more
complicated conditions, such as turning winds or on
early stages of development when the performance of
the approximation of the nonlinear interactions and the
numerical resolution of the model, respectively, can be
analyzed.

THE WAM WAVE MODEL

A brief summary of the main characteristics of
the third generation WAM wave model is presented and
more detailed information is described in WAMDI Group
(1988), Günther et al. (1992) and Komen et al. (1994).

A third generation model such as WAM does not
introduce assumptions about the shape of the spectrum
(SWAMP Group 1985), where the directional wave
spectrum is determined by the integration of the transport
equation which will be used in the numerical prediction
model, that is

                          (1)
where F=F(f,θ,φ,λ,t) is the two dimensional directional
wave spectrum as a function of the frequency f, the
direction θ on a spherical grid of latitude φ and longitude λ
and

represent the rate of change of the position and direction
propagation along a great circle path for waves in water
of infinite depth. The source terms for the infinite depth
case are represented by the wind input (Sin), the
nonlinear transfer (Snl) and the dissipation term (Sds).

The wind input term represents the transfer of
energy from the wind to the ocean, producing waves.
Short waves are produced in the high frequency part of
the spectrum whenever the wind is blowing on the sea
surface. The wind input source term Sin adopted in the
WAM cycle 4 is based on Miles’ theory for laminar flow
given by the expression presented by Snyder et al. (1981)
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and later modified (Janssen 1989; 1991) which describes
the wind-wave momentum transfer. In this theory the
wind input depends in a a quasi-linear way on the wave
spectrum:

where γin is the growth rate parameter. The stress in the
air surface layer is affected by the waves through their
orbital velocity, the so-called wave-induced stress.
Therefore the momentum transfer from air to ocean is
dependent on the sea state, which is taken into account
in the model.

The nonlinear wave-wave interactions are
extremely important for the understanding of the evolution
of the directional spectrum. The role of the nonlinear
term is to redistribute energy from the short wave
components to the long ones resulting in waves that
otherwise would not be generated directly by the wind.
The term Snl describes the energy transfer due to
nonlinear wave-wave interactions when a set of four
waves of different wave lengths, called a quadruplet,
interact with each other satisfying the resonance
conditions

where k is the wavenumber vector and ϖ is the angular
frequency (2πf). The exact calculation of Snl is too time
consuming to be used in operational models so a
parameterization is employed, the discrete interaction
approximation (DIA) (Hasselmann & Hasselmann 1985,
Hasselmann et al. 1985a). It is still not very clear whether
the DIA represents correctly the nonlinear interactions
in more complex sea states such as in situations of
turning or ceasing winds where wind sea-swell transition
and turning wind sea are present (Young, 1999).

Dissipation of energy may occur in deep water
by wave breaking in a process called whitecapping when
the wave amplitude increases beyond a certain level—
this term was introduced to differentiate it from depth-
induced wave breaking. The dissipation term Sds

implemented in WAM cycle 4 is based on the
whitecapping theory (Hasselmann, 1974), uses the
parameterization proposed by Komen et al. (1984) and
takes into account the wave induced stress (Janssen
1991). Like the wind input, Sds is quasi linear in the
wave spectrum and is represented by

with the dissipation rate γds depending on integral
spectral parameters. The parameter Sds is the least well
known of the three source functions and its value was
adjusted to ensure that the action balance equation (1)

achieves an agreement with measurements in fetch-
limited growth.

The WAM model runs operationally at most
forecasting centers and has been validated on statistical
basis against buoy data (see for example the results
presented in Komen et al. 1994). The comparisons of
significant wave height estimated by the model against
Geosat altimeter measurements show an overall good
correlation with small values of bias (Romeiser 1993).
However significant discrepancies were encountered in
some individual cases and have been attributed to errors
in the forcing wind or to inadequate spectral resolution
of the model.

Altimeter wave height data have been assimilated
by the European Centre for Medium-Range Weather
Forecasts (ECMWF) since August 1993 ERS-1 into their
WAM wave model using an optimal interpolation scheme.
In this work a workstation version of the WAM model is
run without the implementation of data assimilation which
means that the outputs from the model are the result of
integration of equation (1) which makes the comparison
of the model against buoy data more meaningful. If one
seeks to search for deficiencies in the numerical model
through detailed spectral comparisons against buoy
measurements the spurious influence of the assimilation
of altimeter data would make the interpretation of the
discrepancies more complicated.

The two dimensional spectra are computed using
the WAM cycle 4 every hour on a latitude-longitude grid
with a spatial resolution of 1o covering the whole South
Atlantic basin from the Equator line to 72o S and from
74o W to 30o E, which totals 7488 grid points. The
spectrum is evaluated up to a high frequency cut-off
which depends on the wind speed and on the wave age,
and beyond this point an f-5 tail is added with the same
directional distribution as the cut-off region. The wave
spectrum is discretized in 25 logarithmically spaced
frequencies with ∆f / f = 0.1 spanning a frequency ran-
ge from 0.042 to 0.41 Hz and 24 directions with 15o of
resolution. The source and the advection terms have a
time step of 12 minutes for all the 600 spectral
components. The wave model is driven using the wind
field at 10 meters height (u

10
) computed by the

Atmospheric General Circulation Model (AGCM) which
is run operationally by ECMWF with the Re-Analysis
(ERA) data set with a latitude-longitude resolution of
1.125o and computed every 6 hours.

METHODOLOGY

In Situ Measurements
The buoy data analysis is comprehensively

explained in Violante-Carvalho et al. (2004) and for
completeness a brief description follows.
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Campos Basin (Figure 1), in the coast off Rio de
Janeiro, is the most important petrolic basin in Brazil.
Tens of platforms are located in this area responsible
for over 75% of the oil produced by the country with
several offshore operations taking place daily. In addition
the surrounding area holds a high urban concentration
with strong commercial and industrial activities. Due to
the remarkable importance of this region, the Brazilian
Oil Company PETROBRAS carried out an extensive
experiment to study the main meteo-oceanographic
features of Campos Basin deploying a heave-pitch-roll
buoy—in addition to mooring lines—during a period of
more than four years in a depth over 1000 m around
150 km offshore at position 22o 31’ S and 39o 58’ W
from March 1991 to March 1993 and from January 1994
to July 1995. The wind speed and direction were
measured hourly from the buoy by two Young propeller-

vane anemometers at a height of 3.78 m and 4.43 m
and later converted for the height of 10 m.

This data set yields a unique opportunity to
investigate the performance of the WAM wave model.
In the first place directional buoy measurements in deep
water are scarce. The buoys under the supervision of
the National Oceanic and Atmospheric Administration
(NOAA) are located mainly in relatively shallow waters
and are almost all omni-directional. The location of buoys
in shallow waters imposes an additional complication
to any sort of analysis due to the spatially high gradients
of the wave parameters compared to the more
homogeneous situations encountered in the open
ocean. Another interesting characteristic of the wave
measurements used in this work is their geographical
location. Right under the line of the Tropic of Capricorn
Campos Basin is strongly affect by swell all the year

Figure 1 - The position of the buoy in Campos Basin, Brazil. The oil fields are represented by the shaded areas.
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round with the low frequency band containing most of
the spectral energy measured by the buoy.

The time series acquired by the buoy were
sampled at a rate of 1 Hz during 20 minutes eight times
a day every three hours and the spectral estimators
were obtained using the Welch Method (see for example
Marple Jr., 1987). Records consisting of 1024 data points
were segmented in 16 partitions of 64 points yielding
32 degrees of freedom and frequency resolution of
0.015625 Hz. A fast Fourier transform (FFT) was applied
employing a Hanning window and 50% overlap between
adjacent segments. The directional spectrum F(f, θ) is
reconstructed using the nonparametric maximum
entropy method (MEM) (Lygre & Krogstad, 1986).

Collocated Data Set
For the present analysis, one year of buoy

measurements is employed comprising the period from
May, 1994 to April, 1995. A data set was constructed
yielding a total of 105 spectra, distributed over the whole
year of analysis, which matches the WAM spectra with
the corresponding data from the wave buoy (see more
details about the collocated data set in Violante-Carva-
lho (2005) hereafter referred as VC05).

Two approaches were employed for the
assessment of the mean frequency estimated by the
wave model. In the first, wave systems extracted from
the two dimensional directional spectra using a
partitioning method based on Gerling (1992) are cross
assigned and their mean frequencies are intervalidated.
Wave systems from the WAM wave spectrum are cross
assigned with wave systems from the buoy spectrum.
In the present work the wave systems extracted using
the partitioning scheme proposed in Hasselmann et al.
(1996) are used for the intercomparison. In the second
approach, the directional spectra estimated by the model
are integrated in direction to provide the frequency
spectrum, which is yielded directly from the buoy heave
data, and the comparisons are performed over specific
frequency bands.

In the first approach wave systems from the WAM
spectra are cross assigned to their counterpart in the
buoy spectra based on four criteria (the cross
assignment criteria are described in fully detail in VC05
and a brief description is presented for completeness).
The first criterion states that the coordinates of the two
partitions must be close enough in k space, that is below
an arbitrary value, reading

where a wave system from the WAM spectrum with

wave numbers (Kw
x
, Kw

y
) is cross assigned with a wave

system of the buoy spectrum with wave numbers (Kb
x
,

Kb
y
). Furthermore in order to eliminate spurious wave

systems peaks must be above an arbitrary threshold
value

where fp is the peak frequency of the wave system. The
third criterion expresses that wave systems are cross
assigned if they are of the same type, that is if both are
pure wind sea or both wave systems are swell
(Hasselmann et al. 1996). And finally if more than one
partition fulfills the previous conditions the closest one
in k space is chosen.

Each independent wave system is generated by
a different meteorological event and its mean frequency
can be determined by integrating over the spectral
interval (f, θ) to which the partition belongs, defined as
(Hasselmann et al. 1996)

                                             (2)
where

is the total energy of a wave system.
However the cross assignment of different wave

systems has a drawback. The main difficulty in the cross
assignment is the association of a wave system in the
WAM spectrum with its counterpart in the buoy
spectrum, for example to intercompare the wind sea
system estimated by the model with the wind sea
system measured by the buoy. Quite often one spectrum
contains more partitions than the other, possibly due to
noise in the measurements or to limitations in the wave
model. Although the four criteria above seem to be
rigorous enough to guarantee the right selection, non-
associated wave systems may be selected. Therefore
a second approach is applied in the investigation where
the one dimensional spectrum F(f) rather than the two
dimensional spectrum F(f, θ) is used for the
intercomparison. On the one hand from the first Fourier
components directly measured by the buoy one can
reliably retrieve the one dimensional spectrum and on
the other the two dimensional directional spectra
computed by the WAM model is integrated (in direction)
yielding the frequency spectrum. The comparisons are
made using specific frequency bands—4 s to 6 s, 6 s
to 8 s and so on till 16 s to 18 s and the mean frequency
is calculated as follows:
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                                             (3)
where

is the total energy over the frequency band where fmin till
fmax delimit the interval.

The main advantage of this approach is that the
intercomparison is performed over specific frequency
bands of the one dimensional frequency spectrum rather
than individual wave systems extracted from the two
dimensional directional spectrum which will ensure that
only related information will be intercompared. Although
the second approach seems to be more rigorous than
the cross assignment of wave systems both approaches
will be discussed in the following.

RESULTS AND DISCUSSION

Figure 2 shows the scatter plot of mean frequency
of WAM estimates against buoy measurements
using (2) and the statistics of the point by point
comparison are presented in Table 1. The overall
statistics of the WAM-Buoy comparison appears to be
good with small values for standard deviation and
normalized RMS error and good correlation, with a
correlation coefficient of 0.82. The reason why the
number of partitions that were cross assigned is greater
than 105 is that more than one partition per spectrum
was selected, that is, one spectrum may have two
partitions (wind sea and swell) selected for the cross-
assignment. From the point by point comparison shown
in Table 1 it is not clear whether the wave model performs
better for longer or shorter wave systems, although the
cluster around the line of slope unity in the low frequency
band is an indication of the better performance of the
wave model for the estimation of the mean frequency of
longer waves. Therefore the data should be examined
more carefully for the spectral detail.

In order to analyze the mean frequency estimated
by the model in more spectral detail their values are
calculated over specific frequency bands using (3). Fi-
gure 3 shows that the WAM model tends to
underestimate the mean frequency of short waves (with
negative bias for periods shorter than 8 s) and
overestimate the mean frequency of long waves (with
positive bias for periods longer than 14 s). Standard
deviation and normalized RMS error tend to decrease
with wave period. It is worth noting that the standard

deviation in the band of periods from 4 to 8 s is 5 times
larger than for periods greater than 16 s, which is
evidence of the poorer performance of the WAM model
computing short waves.

One of the possible causes to explain the larger
errors encountered in the band of short periods in Figu-
re 3 could be a wrong wind input used to drive the wave
model where the underestimation of the mean frequency
represented by the negative bias would be related to an
overestimation of the predicted wind speeds. The
deficiencies of meteorological models in computing the
wind at sea in the Southern Hemisphere are well known
due to the sparseness of available observations.
Therefore the wind measurements acquired offshore by
the meteorological station on the pitch-roll buoy yielded
a good opportunity to validate the wind fields calculated
by the ECMWF model as well. The scatter plot of the
wind speeds measured by the buoy and the wind speeds
estimated by the ECMWF atmospheric model are
shown in Figure 4. The point by point comparison shows
an overall good agreement (correlation coefficient of 0.70)
and normalized rms error of 36%. The ECMWF model
presents negative bias, about 6% of the mean wind
speed measured by the buoy, although its spread is
relatively high with a standard deviation of the order of
50% of the mean buoy wind speed. The negative bias
represents an underestimation of the modeled wind
speed and therefore it seems that the wind input is not
the cause for the poorer agreement in the high frequency
band encountered in Figure 3.

Figure 2 - Scatter plot of the mean frequency of the WAM estimates
and buoy measurements with the line of slope unity drawn passing
through the origin. The comparison statistics is shown in Table 1
and mean frequency is calculated using (2).
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Another possibility for the underestimation of the
mean frequencies of short wind sea waves could be
related to the spectral discretization employed by the
model. A third generation wave model such as WAM
computes the two dimensional directional wave spectrum
integrating the energy balance equation (1) without
restrictions on the spectral shape (Komen et al. 1994,
Young 1999). The nonlinear interactions are responsible,
in the initial growth of wind waves, for the migration of
energy from higher frequencies to frequencies near the
spectral peak forcing a high frequency decay in a manner

inversely proportional to frequency (Young & van Vledder
1993). Thus the estimation of the wave spectrum in the
initial phases of growth is connected to the
discretization for high frequencies employed by the
model, where beyond the maximum high frequency the
wave growth cannot be simulated properly since the
transfer of energy from higher frequencies through
nonlinear interactions will be neglected. Therefore the
selection of the highest frequency is fundamental for
the modeling of the wave growth since the wind sea
peak starts to develop around the cut-off frequency due

Table 1 -  Statistics of the comparisons against buoy measurements of the mean frequencies of the wave systems calculated using (2),
respectively bias, standard deviation (st dev), RMS error normalized with the RMS buoy mean frequency (nrmse) and correlation
coefficient (corr)—bias and standard deviation in Hertz.

Figure 3 - Values of the mean frequency over frequency bands using (3), respectively bias, standard deviation and RMS error
normalized with the RMS buoy mean frequency.
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to the direct input by the wind and the nonlinear
interactions begin to act only when it attains a higher
spectral level when then the peak migrates to lower
frequencies.

Tolman (1992) has investigated numerical errors
in wave models and the influence of the frequency
discretization on the initial stages of growth. The choice
of the highest discrete frequency is fundamental since
it will impose the initial position of the peak and it will
determine the time interval necessary for the nonlinear
interactions to become effective. Considering scaling
laws Tolman concludes that the frequency discretization
used in the WAM model and applied in this work
produces good scaling behavior for wind speeds of 15
to 25 m/s whereas for lower winds the mean wave
energy is overestimated and the mean frequency is
underestimated. This wind speed range is high for the
region of Campos Basin, where in 10 years of wind
measurements acquired on an oil platform 97% of the
wind speeds observed are below 15 m/s and 74% are
below 9 m/s (Violante-Carvalho et al. 1997). From the
data analysed there is no clear evidence of
overestimation of the mean wave energy with the WAM

results being virtually bias free over the whole spectral
domain (not shown here, see VC05).

The underestimation of the mean frequency by
the WAM in the early stages of wave growth as observed
in Figure 3 could be related to the diagnostic tail added
beyond a dynamic (rather than fixed) high frequency
cut-off fhf. The wave spectrum estimated by the model
consists of a prognostic part which extends up to 2.5
times the mean frequency {f} (or maximally up to
fmax = 0.41 Hz) and beyond this point a diagnostic part
represented by an f-5 tail, given as

is employed where

Thus beyond the cut-off frequency of 0.41 Hz the
model cannot simulate properly the initial growth of the
waves since the nonlinear transfer is only triggered after
a certain level resulting in a delay in the development of
the wind sea peak which, in addition, is located at lower
frequencies. The effect of the extension of fhf to a higher
value of 0.97 Hz is also demonstrated in Tolman (1992)
resulting in wave energies and mean frequencies closer
to non-dimensional theoretical growth curves.

Some discrepancies have been identified between
the mean frequency of short waves estimated by the
WAM and measured by a pitch-roll buoy moored in a
tropical region where the typical wind speeds
encountered in the area are way below the standard
optimal range of the wave model. The underestimation
of the mean frequencies computed by the WAM model
obtained in this work may be explained by an inadequate
cut-off high frequency employed, that is the point
beyond which a diagnostic tail is added in order to
evaluate the nonlinear transfer in the prognostic range.
This appears to cause a delay in the development of
the local wave peak in early stages of development which
is more easily detectable through detailed spectral
intercomparisons over specific frequency bands. This
limitation of the WAM model in estimating the initial
growth of wind waves, when its standard frequency ran-
ge is employed, is less likely to be found when the
comparison is performed over the whole spectral domain

Figure 4 - Scatter plot of the wind speed measured by the buoy
and estimated by the ECMWF model (in m/s for a reference height
of 10 m) with the line of slope unity drawn passing through the
origin. The mean wind speed measured by the buoy is 6.5 m/s (the
comparison statistics is shown in Table 2).

Table 2 - Statistics of the comparisons of the wind speed measured by the buoy and estimated by the ECMWF model, respectively bias,
standard deviation (st dev), RMS error normalized with the RMS buoy wind speed (nrmse) and correlation coefficient (corr).
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or on a global scale as most of its validation exercises
have been so far.
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