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Abstract 

The environmental effects caused by selective serotonin reuptake inhibitor drugs have been investigated for marine organisms 
and coastal ecosystems but are scarce in neotropical organisms. This investigation aimed to evaluate the sublethal effects of 
fluoxetine on the embryonic development of the sea urchin Echinometra lucunter and the survival and swimming behavior 
of the brine shrimp Artemia sp. The organisms were exposed to four different concentrations of fluoxetine (30, 300, 3000 and 
30000 ng L-1) and to a negative control (filtered seawater), following the respective standard testing protocols. We verified a 
significant reduction of the embryos development to pluteus larvae, starting from 3000 ng L-1 (54.0±10.9% normal larvae), in 
comparison with the controls (83.5±3.1%). The non-observed effect concentration (NOEC) was estimated at 300 ng L-1, and 
the lowest observed effect concentration (LOEC) was 3000 ng L-1. In the behavior tests with Artemia sp, no significant adverse 
effects were reported for mobility, swimming speed and inactivity time. These results show that Fluoxetine can interfere on 
the development of species like the sea urchin E. lucunter, but short term exposure did not affected the swimming behavior 
of the brine shrimp Artemia sp. Fluoxetine presents thus a potential to affect marine biota and disrupt the equilibrium of the 
coastal ecosystems.
Key words: Ecotoxicology, marine assessment, sublethal effects, fluoxetine, Artemia sp., Echinometra lucunter.

INTRODUCTION

The presence of pharmaceuticals and personal care 
products (PPCPs) in the aquatic ecosystems is of main concern 
and recently has received attention from scientists, legislators 
and environmental managers (Kolpin et al., 2002; Sumpter, 
2003; Vystavna et al., 2012; giebultowicz & Nałęcz-Jawecki, 
2014). Despite many urban regions and large cities are located 
on the coastal zone (Martínez et al., 2007), constituting 
major sources of PPCPs, the adjacent marine and estuarine 
environments have been little studied for this problem (Gaw 
et al., 2014). In the developed countries, where wastewater 
management is well established, the main sources of PPCPs to 
coastal waters include wastewater treatment plants (WWTPs) 
(Daughton, 2007), followed by ships, irregular release of 

domestic sewage, agricultural and livestock residues and 
aquaculture effluents (Gaw et al., 2014). In countries and 
regions where wastewaters are not properly collected or 
treated, the input of sewage to the sea includes diffuse sources, 
urban drainage and/or its intentional discharge into the sea. 
Moreover, many coastal cities discharge sewage into the sea 
throughout sewage outfalls after a pre-conditioning process, 
which does not remove the contaminants from the effluent.

Once in the aquatic environment, the PPCPs and their 
metabolites may be found in the water column, sediments, 
suspended solids and accumulated in the soft tissues of 
the aquatic biota, such as fish and invertebrates (Ramirez 
et al., 2009; Birsch et al., 2015; Biel-Maeso et al., 2018). 
Because PPCPs are bioactive compounds synthesized with 
therapeutically purposes, and because many metabolic 
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pathways are conserved in the most of living organisms, 
PPCPs may influence non target organisms, affecting their 
reproduction, growth, sexual differentiation, immune system 
and behavior (Meguid et al., 2000; Brooks et al., 2006).

In the 1940’s decade, Hanfliger and Schindler firstly 
synthetized the tricyclic antidepressants (TCAs) (Kwon 
& Armbrust, 2006), which were used as medicines in the 
treatment of psychiatric disorders, by acting as serotonin 
reuptake inhibitors (SRRI) (Sánchez-Argüello et al., 2009) 
and metabolism inhibitors (Mayberg et al., 2000). Fluoxetine 
(FLX) is a TCA widely used for the treatment of both adults 
and children. This compound is the active principle of the 
commercial drug Prozac®, and produce a norfluoxetine, a 
metabolite that reduce important enzyme activities in vivo, as 
cytochrome P450 (Goodnick & Goldstein, 1998). FLX is the 
most studied TCA, with results indicating acute and chronic 
toxicity to aquatic organisms (Brooks et al., 2003; Fent et al., 
2006; Weinberger & Kapler, 2014; Luis et al., 2016; Cortez 
et al., 2019).

Acute effects of FLX were already observed in algae 
((Brooks et al., 2003; Johnson et al., 2007), gastropods (Fong 
& Molnar, 2013), bivalves (Chen et al., 2015; Cortez et al., 
2019) and fish (Brooks et al., 2003; Stanley et al., 2007). 
In terms of chronic toxicity, increased reproduction was 
observed in Daphnia magna (Flaherty & Dodson, 2005), 
while Ceriodaphnia dubia exhibited reduced reproductive 
rates (Brooks et al., 2003). Still, little information is available 
regarding chronic toxicity of FLX (Ansai et al, 2016), with 
a no-observed effect concentration (NOEC) of 0.47 µg L-1 
(Nentwig, 2007) and a low-observed effect concentration 
(LOEC) of 447 µg L-1 (Henry et al., 2004). At relevant 
environmental concentrations, this compound is known to 
cause behavioral effects in aquatic organisms, as documented 
for crabs (Peters et al., 2017), amphipods (Bossus et al., 
2014), and fish (Barry, 2013), and caused biochemical and 
citogenotoxic effects in mussels (Cortez et al., 2019) and 
fish (Duarte et al., 2019), and oxidative stress and reduction 
of population density in the marine rotifer Brachionus 
koreanus (Byeon et al., 2020). Most studies were conducted 
with freshwater organisms (Mennigen et al., 2010; Schultz, 
et al. 2011; Dzieweczynski & Hebert, 2012; Kohlert, et al., 
2012; Gaw et al., 2014; Lamichhane et al., 2014; Weinberger 
& Kapler, 2014; Silva et al., 2015; Kalichak et al., 2016); 
however, the few studies made with marine organisms suggest 
a higher sensitivity to FLX (Sverdrup et al., 2002). 

Considering that fluoxetine, like as most of contaminants, 
ends up in the marine environment, the assessment of its toxic 
effects on the biota is a critical issue, in order to allow the 
determination of its toxic thresholds, subsidize ecological risk 
assessments for this compound (Sverdrup et al., 2002) and 
especially the estimation of maximum acceptable levels in the 
environment. In this sense, toxicity tests consist of reliable 
tools to identify and determine the effects of substances on 
aquatic organisms. Protocols assessing the effects of pollutants 
on the embryo-larval of invertebrates, such as bivalves and 
echinoderms, are sensitive and widely accepted and used 

worldwide (Ghirardini et al., 2001). Similarly, assessing 
behavioral changes in organisms allow understanding the 
chances of survival and reproductive success (Anufriieva & 
Shadrin, 2014).

This investigation aimed to evaluate the sublethal effects of 
the fluoxetine to marine organisms, considering the swimming 
behavior of Artemia sp. and the embryonic development of 
the sea-urchin Echinometra lucunter.

MATERIAL AND METHODS

Test substance - Fluoxetine

The pharmaceutical Fluoxetine (IUPAC name N-methyl-
3-phenyl-3-[4-(trifluoromethyl)phenoxy]propan-1-amine) 
(CAS Number 56296-78-7; molecular weight 345.79; purity 
≥ 98%; which molecular formula is C17H18F3NO) as well as all 
other reagents used in this study were purchased from Sigma 
Aldrich (Steinheim, Germany). FLX is a selective serotonin 
reuptake inhibitor and consists of an effective substance to 
treat the symptoms of human depression (O’Shea, 1991). 
The compound is stable at normal conditions, with a fusion 
temperature ranging about 158.4 – 158.9 °C. Its solubility in 
water is 14 mg mL-1 at 25°C and its pKa is 4.6 (Risley & 
Bopp, 1990).

In this investigation, nominal concentrations of FLX were 
prepared by the direct dilution of FLX in seawater previously 
filtered through a 45µm pore acetate membrane. Four test 
concentrations were used (30, 300, 3000, 30000 ng L-1), plus a 
negative control which consisted of filtered seawater in which 
FLX was virtually absent (0 ng L-1). The test concentrations 
were selected based on previous information regarding the 
environmental levels of FLX and its toxic levels to other 
species (Mesquita et al., 2011; Franzellitti et al., 2015).

Embryonic development toxicity test - Echinometra lucunter

In this bioassay, we evaluated the effects of FLX on the 
development of embryos of the sea urchin Echinometra 
lucunter after exposing the fertilized eggs to the different 
chemical concentrations. The tests were conducted following 
the standard protocol described by ABNT (2012).

Adult individuals of E. lucunter (Linnaeus, 1758) were 
collected at Palmas island, Guarujá - Brazil (24º00’29.47”S 
- 46º19’30.34”W) and transferred to the laboratory, where 
spawning was stimulated by osmotic induction (injection of 
2.5 mL KCl 0,5M in their coelomic cavities). The ovules were 
released in a glass beaker containing filtered seawater in an 
acetate membrane of 0.45 µm. Prior to in-vitro fertilization, the 
eggs were examined under microscope for their morphology 
and viability. The sperm was stored dry in a little beaker kept 
on ice, until their activation by addition of filtered seawater. 

The fertilization was made by adding a 2-ml aliquot 
of sperm solution into the ovules solution, followed of a 
gentle agitation for 2h, in order to allow fecundation. Then, 
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sub-samples were examined on microscope to confirm the 
formation of the fertilization membrane; a viable test should 
present a minimum of 80% fertilized eggs. Next, about 500 
eggs were introduced in each replicate, which consisted of 
glass tube tests with 10 ml of test-solutions (i.e. the FLX 
concentrations or the control). Four replicates were used for 
each concentration. After about 36 hours (time necessary to 
the embryos reach the pluteus stage), the test was finished, by 
the addition of 0.5 mL tamponed formaldehyde (10%) in each 
replicate. Further, the first 100 embryos of each replicate were 
examined on microscope, in order to determine the normal 
development rates and the presence of abnormalities, such as 
delays, morphological alterations, or absence of development.

Behavioral toxicity test - Artemia sp.

In the bioassay for identifying behavior effects in adults of 
brine shrimps (Artemia sp.), 30 healthy males were selected 
by random from a stock population acquired from a shop. 
These animals were introduced into glass beakers containing 
200 mL of FLX concentrations (or the control) and exposed 
for 48 hours, in a static experiment. The physical chemical 
parameters were controlled during the experiment, as follows: 
photoperiod of 16h:8h (clear-dark), salinity 35±1, and 
temperature of 25±2 °C.

At the end of the experiment, 12 animals from each 
treatment were randomly separated and individually placed in 
Petri dishes (with mean diameters of 95.7±4.5 mm) containing 
a water layer enough to allow only the horizontal swimming 
(about 1-2 mm deep). Then, 6-minutes films were made with 
each animal, from which the first 5 minutes corresponded to 
the acclimation period and were discarded from the analyses. 
In the last minute of each film, the swimming behavior 
of the animals was evaluated for the following endpoints: 
mean swimming speed, total distance covered, and inactivity 
time (Venkateswara Rao et al., 2007). A computer aided 
tracking video system was employed (Ethovision XT; Noldus 
Information Technology, Wageningen, Netherlands) to 
automatize the readings of the respective behaviors. 

Statistical Analyses

The results of the test with sea urchin embryos were 
firstly used to calculate the inhibition concentration of 50% 
development (IC50), by using the Trimmed Spearman-Karber 
method (Hamilton et al., 1977). The data were checked for 

normality and variance homogeneity by the Shapiro-Wilk’s 
and Levene’s tests, respectively. Because the embryonic 
development data were not normal (Shapiro-Wilks p=0.011) 
and heterocedastic (Levene p=0.0007), the results were 
analyzed by the Kruskal-Wallis test, followed by the Dunn’s 
multiple comparison, in order to calculate the respective 
NOEC and LOEC.

The behavioral endpoints covered distance and mean 
swimming speed presented normal distribution and 
homogeneous variances (Shapiro-Wilks p=0.548 and Levene 
p=0.333; and Shapiro-Wilks p=0.979 and Levene p=0.333, 
respectively), thus they were analyzed by one-way analysis 
of variance (ANOVA) followed by the Tukey’s test. For the 
inactivity time, the data were not normal nor homocedastic 
(p<0.05), thus they were analyzed by the Kruskal-Wallis teste 
followed by the Dunn’s multiple comparison.

RESULTS

Embryonic development toxicity test - Echinometra lucunter

The physical-chemical parameters of the test-solutions 
are presented in the Table 1, and they remained within the 
acceptable ranges, according to the test protocol for the 
species (ABNT, 2012).

The control group presented embryonic development above 
80% (Figure 1), that is the minimum acceptable, according to 
ABNT (2012). Significant differences were detected among 
treatments (Kruskal-Wallis; H(4,N=20)=13.912, p=0.007). 
Embryos of E. lucunter exposed to 30,000 ng L-1 exhibited 
reduced embryonic development rates (Dunn p=0.025). The 
inhibition concentration to 50% organisms after 36h (IC50-
36h) was calculated as 25,000.9 (12,884.9 - 48,745.6) ng L-1. 
The LOEC was estimated as 30,000 ng L-1 while the NOEC 
was 3000 ng L-1.

Behavioral toxicity test - Artemia sp.

The physical-chemical parameters of the test-solutions 
are presented in the Table 2, and they remained within the 
acceptable ranges, according to the test protocol for the 
species (ABNT, 2012).

In the test evaluating effects on the swimming behavior 
of Artemia sp., there were no significant differences between 

Table 1. Physical-chemical parameters measured at the end of the embryonic experiment with the sea-urchin Echinometra lucunter.

Fluoxetine concentrations 
(ng L-1)

Total ammonia 
(mg L-1)

Unionized ammonia 
(ug L-1)

Temperature (°C) pH Salinity
Dissolved oxygen

(mg L-1)

0 14.13 0.25 25 ± 2 7.59 35 6.60
30 15.57 0.30 25 ± 2 7.63 35 5.40
300 25.42 0.46 25 ± 2 7.60 35 5.20
3000 22.36 0.41 25 ± 2 7.61 35 5.30
30000 17.55 0.29 25 ± 2 7.57 35 4.90
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total covered distances in all concentrations tested (Figure 
2A – ANOVA; F4,45=1,842, p=0.137). Regarding the mean 
swimming speed, no significant differences were detected as 
well (Figure 2B – ANOVA; F4,45=1,838, p=0.137), as well for 
the inactivity time (Figure 2C – Kruskal-Wallis; H(4,n=50)= 
4.041, p=0.399).

DISCUSSION

This study evaluated some biological effects of FLX on 
marine invertebrates, namely the embryonic development 

of the sea-urchin E. lucunter and the swimming behavior of 
the crustacean Artemia sp. Fluoxetine is ranked within the 
top 20 most threatening pharmaceuticals to the environment, 
due to its ability to disrupt the endocrine systems of non-
target organisms and the risks associated to its release in the 
environment (Kumar & Xagoraraki, 2010). 

On the other hand, no differences in the swimming behavior 
of Artemia sp. were detected (Figure 2) independently of 
the FLX concentration. According to the literature, other 
organisms exhibited alterations in their behavior after the 
exposure to FLX. The estuarine crab Carcinus maenas 
presented alteration of its locomotion when exposed to 120 µg 
L-1 of FLX (Mesquita et al., 2011); the time required to cover 
long distances was significantly increased in comparison to the 
control. De Lange et al. (2006) observed that for the freshwater 
amphipod Gammarus pulex exposed to 10 and 100 ng L-1 FLX 
the locomotion time was 65% smaller than that exhibited by 
the control animals. Other studies reported cytotoxic effects 
of FLX in marine invertebrates, after exposure at 30 ng L-1 
(Franzellitti et al., 2014). Moreover, studies reported chronic 
toxicity in adult vertebrates and invertebrates. Weinberg II 
& Klaper (2014) observed a more aggressive behavior and 
negative effects in the defense and construction of nests 
in the fathead minnow Pimephales promelas exposed at 
fluoxetine concentrations <1 ug L-1, while Stanley et al. 
(2007) observed feeding disturbances in the same species. 
Ding et al. (2017) reported reduction of the enzymatic activity 
of the acetylcholinesterase (AChE) in D. magna exposed to 
concentrations up to 5 µg L-1 FLX. In studies conducted with 

Fig. 1. Percent of normal embryo-larval development of Echinometra 
lucunter at different concentrations of fluoxetine. * = statistical difference 
with the control.  The error bars show the respective standard deviations.

Table 2. Physical-chemical parameters measured at the beginning of the two days exposure to different concentrations of fluoxetine and before the 1 minute 
shoot of adult males of Artemia sp.

Fluoxetine 
concentrations (ng L-1)

Total ammonia 
(mg L-1)

Unionized amônia

(ug L-1)
Temperature (°C) pH Salinity

Dissolved oxygen

 (mg L-1)

0 <LD <LD 25 ± 2 7.63 35 4.70
30 <LD <LD 25 ± 2 7.59 34 4.80
300 <LD <LD 25 ± 2 8.01 35 4.90
3000 <LD <LD 25 ± 2 7.77 35 5.00
30000 0,57 6,03 25 ± 2 8.17 35 4.50

Fig. 2a. Distance traveled by adult individuals of Artemia sp. in 1 minute after two days of exposure to different concentrations of fluoxetine; Fig. 2b. 
Average speed of adult individuals of Artemia sp. in 1 minute after two days of exposure to different concentrations of fluoxetine; Fig. 2c. Downtime of adult 
individuals of Artemia sp. in 1 minute after two days of exposure to different concentrations of fluoxetine. Error bars show the respective standard deviations.
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Danio rerio, Chai et al. (2021) observed impairment of cardiac 
tissue and arrhythmia in organisms exposed to 100 ng L-1 of 
FLX, while Zindler et al. (2020) reported behavioral changes 
related with stress, at environmentally relevant concentrations 
(2.9 nM), and an additive effect when FLX was mixed with its 
metabolite norfluoxetine.

Comparing the responses of the two species tested, 
embryos of E. lucunter were more sensitive than Artemia 
sp. Previous studies reported that adults of Artemia sp. were 
resistant to environmental changes and chemical substances 
(Allender et al., 2012; Peixoto et al., 2019). Thus, such 
tolerance could explain the absence of significant effects of 
FLX on the behavior of Artemia sp. in the present study. 
Minguez et al. (2014) showed that nauplii of Artemia salina 
were more resistant than organisms from other trophic levels, 
when acute effects were compared.

The results of the present investigation also indicated 
that toxicity occurred at concentrations higher than those 
reported in the environment. Fluoxetine concentrations in 
superficial coastal waters are one order of magnitude lower 
than the observed toxicity. The mean concentration of FLX 
in effluents of the WWTP of Seixal (Portugal) was 946 ng 
L-1 (Salgado et al., 2011), while Birch et al. (2015) found a 
maximum concentration of 36 ng L-1 in surface waters from 
an estuary of Sydney, Australia. Other studies conducted in 
the San Francisco Bay (USA), Mediterranean Sea (Israel)  and 
Pacific Ocean (USA) reported respective maximum and mean 
concentrations of FLX as 90 ng L-1 and 66 ng L-1 (Nödler et 
al., 2014). Jiang et al. (2014) reported concentrations of FLX 
below the detection limit in coastal waters from Taiwan. In 
Brazil, Cortez et al. (2019) reported concentrations up to 
0.58 ng L-1 in coastal waters from the Santos Bay, in the São 
Paulo State. In the same study, the authors reported enzymatic 
alterations in soft tissues of the mussel Perna perna exposed 
to concentrations ranging between 30 and 300 ng L-1 FLX.

Despite the toxic concentrations of FLX obtained in our 
study are above the environmental concentrations previously 
reported for coastal surface waters around the world (Jiang et 
al., 2014; Nödler et al., 2014; Birch et al., 2015), this fact not 
necessarily indicates lack of environmental risks associated 
to this compound, because only two species were tested, 
and tests consisted of short-term exposures. Moreover, the 
environmental concentrations of FLX in Brazil are unknown, 
despite the discharge of untreated sewage in most regions. 
Thus more ecotoxicological studies are required, considering 
different trophic levels, and especially long-term exposure, 
in order to provide robust information to determine potential 
environmental risks associated to the FLX.

Moreover, like other pharmaceuticals, FLX tends to occur in 
the environment associated with other compounds, especially 
those present in sewage, such as household products, PPCPs, 
metals, oil and its derivatives, ammonia and other chemicals 
(Birch et al., 2015; Ding et al., 2017). Thus, the combination 
of FLX with other chemicals, in complex mixtures, may 
produce environmental risks, even if the concentrations are 
low. In this sense, further studies considering the combined 
effects of fluoxetine and other chemicals are also required.
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