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Abstract

The textile industry extensively uses synthetic chemicals such as dyes. Several studies report the deleterious effects (e.g., cell 
death and DNA damage) of dispersive dyes on humans. Humans can be exposed to toxic dyes by ingesting contaminated waters 
or dermal contact with colored garments. Thus, toxicity evaluations of textile dyes using organ-specific cell lines are relevant 
to estimating their hazard. Cyto- and geno-toxicity of the dyes Reactive Green 19 (RG19), Reactive Blue 2 (RB2), Reactive 
Blue 19 (RB19), Reactive Red 120 (RR120) and Reactive Orange 16 (RO16) were evaluated by the In Vitro MicroFlow® kit 
with immortalized human keratinocyte cell line (HaCaT) and immortalized human hepatic cell line (HepaRG). Concentration-
dependent cytotoxicity was observed for HaCaT cells exposed to three of the five tested dyes (RB2, RB19, RO16), while 
in HepaRG cells, cytotoxic effects were only verified after exposure to RB19 and RO16 at the highest tested concentration 
(1000 µg/mL). Genotoxicity was not detected in any tested textile dyes under both test conditions (HaCaT and HepaRG). In 
conclusion, our data provide evidence that, although the tested reactive dyes are not genotoxic, which is in agreement with 
published literature, they can cause cytotoxicity in both target tissue, and the effect can be more severe in epidermal cells 
(HaCaT) than in liver cells (HepaRG). This differential cytotoxicity data emphasizes the need to assess the toxicity of textile 
dyes to the target organ specificity. 
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INTRODUCTION

The dyeing of fabrics is an art that began thousands 
of years ago, and the commercial availability of dyes is 
enormous (≥ 10,000 colors) (Ferraz et al., 2012). Reactive 
dyes are the main class of dyes used in dyeing cotton fibers. 
However, their application may cause undesirable levels of 
environmental contamination and harmful effects on living 
organisms, including humans (Leme et al., 2014, 2015b; 

Fernandes et al., 2019). The environmental problems of 
reactive dyes are related to their high solubility in water 
and nondegradable under the typical aerobic conditions of 
conventional and biological treatment systems (Hassan et 
al., 2009; Oliveira et al., 2010). Ingestion of dispersive dye-
polluted waters can compromise human health by inducting 
DNA damages (Oliveira et al., 2006, Chequer et al., 2011; 
Ferraz et al., 2013; Vacchi et al., 2013, 2017; Domingues 
et al., 2020). Apart from the oral route of exposure, humans 
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can also be affected by textile dyes by dermal contact with 
colored garments (Leme et al., 2014, 2015b; Brüschweiler et 
al., 2014). 

Based on the association between DNA damages and 
cancer development, the safety assessment of chemicals 
comprises genotoxicity studies (Bolognese et al., 2017). 
In vitro genotoxicity tests are frequently performed with 
transformed or permanently growing cell lines (e.g., V79 and 
CHO) (Corvi & Madia, 2017). However, the choice of cell type 
for genotoxicity testing does not consider hazard identification 
in different routes of exposure; and chemical toxicity can 
differ depending on the target organ. For instance, the textile 
dye Disperse Red 1 is genotoxic for human hepatoma cells 
(HepG2) but not for dermal equivalents (Leme et al., 2015b). 

The in vitro micronucleus (MN) assay tests clastogenicity/
aneugenicity, and it is an endpoint required to predict chemical 
genotoxicity (Corvi & Madia, 2017). Studies using flow 
cytometry-based MN assay demonstrated several advantages 
in using this method: high throughput, high number of cells 
capable of being evaluated, good performance in detecting 
chemical genotoxicity, identification of genotoxic mode of action 
(clastogenic and/or aneugenic effects), and detection of cytotoxic 
effects (Avlasevich et al., 2011; Bryce et al., 2011; Yao et al., 
2013; García-Rodríguez et al., 2019). Thus, flow cytometry-
based MN assay allows assessing cytotoxicity and genotoxicity, 
which are predictive parameters essential for characterizing 
chemical toxicity (García-Rodríguez et al., 2019).

In this study, the organ-specific cyto- and geno-toxicity of 
the textile dyes Reactive Green 19 (RG19), Reactive Blue 2 
(RB2), Reactive Blue 19 (RB19), Reactive Red 120 (RR120) 
and Reactive Orange 16 (RO16) was investigated using In 
Vitro MicroFlow® kit in miniaturized (96-well plate) format. 
The HaCaT (immortalized human keratinocyte cell line) and 
HepaRG (immortalized human hepatic cell line ) cells were 
employed as representative models of dermal and oral routes 
of exposure, respectively.

MATERIAL AND METHODS

Tested chemicals

The textile dyes Reactive Green 19 (RG19 – CAS No. 
61931-49-5, dye content 65%), Reactive Blue 2 (RB2 – CAS 
No. 12236-82-7, dye content 60%), Reactive Blue 19 (RB19 
– CAS No. 2580-78-1, dye content ~50%), Reactive Red 
120 (RR120 – CAS No. 61951-82-4, dye content 50-70%) 
and Reactive Orange 16 (RO16 – CAS No. 12225-83-1, dye 
content ≥ 70%) (Fig. 1) were purchased from Sigma-Aldrich. 
Phosphate buffered saline (PBS) was used as a vehicle to 
prepare the working dye solutions.

In vitro MicroFlow® kit (Litron) assay

Cell culture. HaCaT cells (Cell line services, Germany) and 

HepaRG (Biopredic International, Rennes, France, acquired 
from Fisher Scientific) were grown in culture medium at 
37°C, flushed with 5% CO2 in air. Dulbecco’s Modified Eagle 
Medium (DMEM), supplemented with 10% fetal bovine 
serum (FBS) (all from Gibco®, Life Technologies, Grand 
Island, USA) and addition of 100 IU/mL penicillin G, 100 
mg/mL streptomycin and 1 µg/mL amphotericin, was used 
for HaCaT cells. Williams’ E medium, supplemented with 
10% fetal calf serum (FCS), 1% insulin, 1% hydrocortisone 
hemisuccinate and addition of 0.1% streptomycin/penicillin, 
was used for HepaRG. 

Chemical treatments. Tested concentrations were 
determined according to Leme et al. (2015b). HaCaT and 
HepaRG cells, at 1x105 and 2x105 cells/mL, respectively, 
were exposed in a 96-well format to six concentrations, of the 
test dyes (at 31.25 to 1000 µg/mL); PBS 20%-v/v (negative 
control); Mitomycin C (MMC) at 2.5 to 10 µg/Ml (positive 
control) and Vinblastine (VB) at 12.5 -50 ng/mL (positive 
control) for 48 and 24 h, for both cell lines, respectively. 
The experiments were carried out in duplicate/treatment and 
repeated twice. 

Flow cytometry-based MN measurements. A sequential 
staining method was applied to the treated samples according 
to the instructions described in the In Vitro MicroFlow® Kit 
(Litron Laboratories Ltd., Rochester, New York, United 
States). Briefly, the medium was removed, and the treated 
cells were stained with the photo-activated dye ethidium 
monoazide (EMA). The cells were washed, then lysed, and 
stained with lysis solutions composed of a nonionic detergent, 
pan-nucleic acid dye SYTOX Green and RNase.  

The plates were immediately analyzed with a BD 
Biosciences (San Jose, CA) FACSCanto II flow cytometer. 
The percentages (%) of relative survival, EMA-positive, 
hypodiploid nuclei and MN were determined based on the 
acquisition of at least 10,000 gated nuclei per well. 

Data evaluation. The % and fold-increase calculations 
were made according to Bryce et al. (Bryce et al., 2011), 
using Excel Office 2007 (Microsoft, Seattle, WA). A result 
was deemed positive if the following criteria were met: (i) 
cytotoxicity (EMA-positive events) showed greater than 3-fold 
increase compared with the concurrent solvent control values; 
(ii) genotoxicity – not overly cytotoxic concentration (without 
exceeding 60% reduction of relative survival) resulting in ≥ 
3-fold increase in mean % MN relative to control value. 

RESULTS AND DISCUSSION

Three of the five tested reactive dyes (RB2 (1000 µg/
mL), RB19 (500 and 1000 µg/mL), RO16 (1000 µg/mL)) 
were cytotoxic (i.e., significant increase in EMA-positive) 
for HaCaT cells (Figure 1). In contrast, in HepaRG cells, 
cytotoxic effects were observed only for RB19 and RO16 at 
the highest tested concentration (1000 µg/mL) (Figure 2). 
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Figure 1. Cyto- and geno- data of flow cytometry-based in vitro MN assay with HaCaT cells are graphed for the tested reactive textile dyes. The Y-axis 
shows fold increase values of EMA+ and MN. The YY-axis showed the percentage of Relative Survival. *≥3-Fold over the concurrent solvent control 

(PBS).
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Figure 2. Cyto- and geno-toxicity data of flow cytometry-based in vitro MN assay with HepaRG™ cells are graphed for the tested reactive textile dyes. 
The Y-axis shows fold increase values of EMA+ and MN. The YY-axis showed the percentage of Relative Survival. *≥3-Fold over the concurrent solvent 

control (PBS). 
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Cytotoxic effects were correlated to organ-specific toxicity, 
as observed in hepatic, cardiac and nephrotoxicity. Thus, 
assessing cell cytotoxicity in vitro helps in the earlier prediction 
of toxic effects on specific organs (Lin et al., 2012). In this 
context, the first step is to identify differences in sensitivity 
for each particular cell line. Specific cytotoxicity is related to 
the intrinsic cellular, physiological and metabolic differences 
between different cell lines, emphasizing the need to study the 
toxicity in an organ-specific context (Yeasmin et al., 2017).   

The results showed that HaCaT cells appear to be more 
sensitive to reactive dyes than HepaRG cells. Other studies 
have indicated that HaCaT cell line tends to be more sensitive 
than other human cell lines, such as HepG2, HPL-1D, A431 
(NTP, 2019; Eremin et al., 2018). In addition, HepaRG is a 
metabolic competent cell line with a metabolizing rate greater 
than HaCaT. This may contribute to faster detoxification of 
these chemicals, causing a lower level of damage in the cell. 
Furthermore, it is important to note that RB19 and RO16 are 
the dyes with the lowest molecular weights among those tested, 
and these dyes presented the highest level of cytotoxic effects 
in both cell lines. Thus, our data suggest that molecular weight 
might be an important contributor factor to the cytotoxicity of 
reactive dyes, as with other types of compounds (Monnery et 
al., 2017; Huang et al., 2004).

Regarding the genotoxic effects, for both cell lines, 
genotoxicity was not verified in any of the tested dyes 
compared to the negative control (Figure 1-2). Studies with 
reactive dyes using alkaline Comet assay generally report no 
genotoxicity for these dyes with mammalian cell line cultures 
(Leme et al., 2014; Janović et al., 2017), except RG19 and 
RB5 that presented genotoxicity in a three-dimensional (3D) 
human dermal equivalent and human lung epithelial cell line 
(Leme et al., 2015b; Janović et al., 2017). This may occur 
due to the metabolic activities specific to each cell type and 
the test setup systems used in each study; 3D tissue-like are 
more likely to suffer genotoxic damages when compared to 
monolayer cell cultures (Mandon et al., 2019; Behravesh et 
al., 2005). Moreover, differences between the genotoxicity 
test methods (Comet assay and MN assay) may explain the 
divergent results for RG19 and RB5. The Comet assay can 
detect primary DNA damages (e.g., single and double DNA 
strand breaks), which are likely to suffer the rapid action of 
the DNA repair systems (Collins, 2014). Therefore, as the 
chemical can cause DNA damage by different mechanisms of 
action, genotoxicity testing needs to cover all types of DNA 
damages (DNA strand breaks, chromosomal aberrations, 
sister-chromatid exchanges and micronuclei) to precisely 
determine the genotoxic nature of a chemical (Al-Saleh et al., 
2017; Tafurt-Cardona et al., 2015). 

CONCLUSION

The manufacturing of textiles commonly utilizes reactive 
dyes for dyeing cotton and other cellulose-based fibers. Given 
its widespread use and different human exposure pathways, it 
is important to evaluate the toxicity of textile dyes considering 

their different context of human exposure. Although the tested 
reactive dyes do not cause genetic damage (genotoxicity), 
they can cause cytotoxic effects in keratinocytes and hepatic 
cells and may pose risks to human health. The cytotoxicity 
effects of the reactive dyes are organ-specific, and it seems 
that epidermal cells (HaCaT) are more prone to the cytotoxic 
effects of these dyes than the hepatic cells (HepaRG). In order 
to better understand the present results, additional mechanistic 
studies need to be performed to elucidate the cellular uptake 
of tested dyes and their mode of action, particularly those 
related to cytotoxicity and genotoxicity. Nevertheless, the 
findings of this study show the need to perform investigations 
on the toxicity of textile dyes, considering local toxicity in 
target organs relevant for human exposure. 
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