• Abstract

    INFLUENCE OF RIPARIAN FOREST AND TEMPERATURE ON PRIMARY PRODUCTION OF TROPICAL STREAMS

    Published date: 18/10/2023

    Primary production is a key feature for the functioning of aquatic ecosystems. The trophic state of the streams reflects this primary production and is influenced by local limnological variables and level of integrity of the watershed. Thus, in this study, habitat integrity index (HII) and physical, chemical, and biological parameters of tropical streams were sampled in two sub-basins to understand the functioning of these ecosystems. We hypothesized that the variables association to the environmental integrity should determine the primary production in the streams. Because of the similar land use in the sub-basins (ex.: agriculture and livestock) they will show similar limnological variables. To identify how the streams differed in relation to their limnological characterization and the HII, we performed a Principal Component Analysis (PCA). The association between variables was assessed by Pearson's correlation analysis. To identify the difference between the two basins, a Student's Test was performed. The best predictors of primary production were determined using a multiple regression analysis with the Akaike selection criteria. The concentration of chlorophyll-a in the surface water indicated that the tropical streams sampled have, in general, low concentrations of nutrients, except for some more urban points. The variables that most differed among streams were blue-green cells/ml, pH, conductivity, and width of the riparian forest. Only redox potential and pH differed between the two watersheds. Temperature, blue-green cells/ml and width of the riparian forest were the variables that best predicted the phytoplankton primary production of watercourses in both watersheds. In this study we reinforce the importance of temperature in aquatic productivity, even more present in the face of climate change, which, added to deforestation, increases the surface area of sunlight in water courses, increases primary productivity and the eutrophication process.

    Keywords: blue-green algae; chemical variables; chlorophyll-a; HII; phytoplankton.

  • References

    American Public Health Association (APHA). 2017. Standard Methods for the Examination of Water and Wastewater. 23rd ed. Washington, D.C.: APHA.

    Aboim, I.L.; Gomes, D.F. & Mafalda Junior, P. O. 2020. Phytoplankton response to water quality seasonality in a Brazilian neotropical river. Environ Monit Assess. 192(70):1-16. DOI: 10.1007/s10661-019-7882-5

    Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Moraes Gonçalves, J.L. & Sparovek, G. 2014. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift. 22(6):711–728. DOI:10.1127/0941-2948/2013/0507

    Anderson, D.R. & Burnham, K.P. 2002. Avoiding Pitfalls When Using Information-Theoretic Methods. J Wildlife Manage. 66(3):912-918. DOI:10.2307/3803155

    Antoneli, V.; Pulido-Fernández, M.; Bednarz, J.A.; Brandes, L.; Vrahnakis, M.; Kazoglou, Y.; Lozano-Parra, J. & García-Marín, R. 2021. Changes in Water Quality of the River das Antas as It Passes through Rural and Urban Areas. Urban Sci. 5(1):22. DOI:10.3390/urbansci5010022

    Araújo, M.C. & Oliveira, M.B.M. 2013. Monitoramento da qualidade das águas de um riacho da Universidade Federal de Pernambuco, Brasil. AMBIAGUA. 8(3), 247-257. DOI: https://doi.org/10.4136/ambi-agua.1192

    Araújo, F.G., Melão, M.G.S., Santos, J.E. dos, Araújo, R.G.O., & Figueiredo-Barros, M.P. 2018. Classification of Brazilian Reservoirs Using the Trophic State Index Based on Chlorophyll-a Concentration. Braz. J. Aquat. Sci. Technol., 22(3), e1278. doi:10.21477/1984-5333-2018-1278

    Branco, C.C.Z.; Riolfi, T.A.; Crulhas, B.P.; Tonetto, A.F.; Bautista, A.I.N. & Necchi Júnior, O. 2017. Tropical lotic primary producers: Who has the most efficient photosynthesis in low-order stream ecosystems? Freshw Biol. 62(9):1623–1636. DOI: 10.1111/fwb.12974

    Brasil. 2005. Resolução CONAMA N°357, de 17 de março de 2005. Diário Oficial da União, Brasília, Brasil.

    Brasil, J.; Santos, J.B.O.; Sousa, W.; Menezes, R.F.; Huszar, V.L.M. & Attayde, J.L. 2020. Rainfall leads to habitat homogenization and facilitates plankton dispersal in tropical semiarid lakes. Aquat Ecol. 54(1), 225–241. DOI: 10.1007/s10452-019-09738-9

    Bucci, M.H.S & Oliveira, L.F.C. 2014. Índices de Qualidade da Água e de Estado Trófico na Represa Dr. João Penido (Juiz de Fora, MG). AMBIAGUA. 9(1):130-148. DOI: 10.4136/ambi-agua.1290

    Carlson, R.E. 1977. A trophic state index for lakes. Limnol Oceanogr. 22(2): 361-369. DOI:10.4319/lo.1977.22.2.0361

    Carneiro, F.M.; Nabout, J.C.; Vieira, L.C.G.; Roland, F. & Bini, L.M. 2014. Determinants of chlorophyll-a concentration in tropical reservoirs. Hydrobiologia. 740(1):89–99. DOI:10.1007/s10750-014-1940-3

    Carpenter, S.R.; Brock, W.A.; Cole, J.J. & Pace, M.L. 2009. Leading indicators of phytoplankton transitions caused by resource competition. Theoretical Ecology:2(3), 139–148. DOI:10.1007/s12080-009-0038-4

    Effert-Fanta, E.L.; Fischer, R.U. & Wahl, D.H. 2019. Effects of riparian forest buffers and agricultural land use on macroinvertebrate and fish community structure. Hydrobiologia. 841(1):45–64. DOI:10.1007/s10750-019-04006-1

    Esteves, F.A. 1998. Fundamentos de Limnologia. 2ª Ed. Rio de Janeiro: Interciência, 602p.

    Ferrareze, M. 2012. The effect of the land use on phytoplankton assemblages of a Cerrado stream (Brazil). Acta Limnol Brasil. 24(1):43-51. DOI: 10.1590/S2179-975X2012005000025

    Figueroa-Nieves, D.; Royer, T. V. & David, M.B. 2006. Controls on chlorophyll-a in nutrient-rich agricultural streams in Illinois, USA. Hydrobiologia 568(1):287–298. DOI:10.1007/s10750-006-0114-3

    Fornari, M.R.; Camotti-Bastos, M.; Medeiros-Silveira, F.; Vargas, J.P.R.; Fernandes, G.; Santos, M.A.S. & Santos, D.R. 2018. Efluentes urbanos na água do Rio Marau (Brasil). Qualidade da água no Rio Marau. Bitácora Urbano Territ. 28(3):121-130. DOI:10.15446/bitacora.v28n3.68152

    Giehl, N.F.S.; Brasil, L.S.; Dias-Silva, K.; Nogueira, D.S. & Cabette, H.S.R. 2019. Environmental Thresholds of Nepomorpha in Cerrado Streams, Brazilian Savannah. Neotrop Entomol. 48:186–196. DOI:10.1007/s13744-018-0632-5

    Goncharuk, V.V.; Bagrii, V.A.; Mel’nik, L.A.; Chebotareva, R.D. & Bashtan, S. Y. 2010. The use of redox potential in water treatment processes. J Water Chem Techno. 32(1):1–9. DOI:10.3103/S1063455X10010017

    Hammer, Ø., Harper, D.A.T., & Ryan, P.D. 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron., 4(1), 1-9. doi:10.26879/876

    Hilary, B.; Chris, B.; North, B.E.; Angelica Maria, A. Z.; Sandra Lucia, A. Z.; Carlos Alberto, Q.G.; Beatriz, L.G.; Rachael, E. & Andrew, W. 2021. Riparian buffer length is more influential than width on river water quality: A case study in southern Costa Rica. J Environ Manage. 286:112132. DOI:10.1016/j.jenvman.2021.112132

    Hill, W.R.; Fanta, S.E. & Roberts, B.J. 2009. Quantifying phosphorus and light effects in stream algae. Limnol Oceanogr. 54(1):368–380.

    Jankowski, K.J.; Deegan, L.A.; Neill, C.; Sullivan, H.L.; Ilha, P.; Maracahipes-Santos, L.; Marques, N. & Macedo, M.N. 2021. Land use change influences ecosystem function in headwater streams of the lowland amazon basin. Water-Sui. 13(12). DOI: 10.3390/w13121667

    Kreiling, R.M.; Bartsch, L.A.; Perner, P.M.; Hlavacek, E.J. & Christensen, V.G. 2021. Riparian Forest Cover Modulates Phosphorus Storage and Nitrogen Cycling in Agricultural Stream Sediments. Environ Manage. 68(2):279–293. DOI: 10.1007/s00267-021-01484-9

    Lamparelli, M. C. 2004. Grau de trofia em corpos d`água

    do estado de São Paulo: avaliação dos métodos de monitoramento. Doctoral thesis. Instituto de Biociências da Universidade de São Paulo. 207p.

    Legendre, P. & Legendre, L. 1998. Numerical ecology. 2nd edition. Elsevier Sci-ence BV, Amsterdam, 853p.

    Litchman, E.; de Tezanos Pinto, P.; Edwards, K.F.; Klausmeier, C.A.; Kremer, C.T. & Thomas, M.K. 2015. Global biogeochemical impacts of phytoplankton: A trait-based perspective. J Ecol. 103(6):1384–1396. DOI:10.1111/1365-2745.12438

    Marcionilio, S.M.L.O.; Machado, K.B.; Carneiro, F.M.; Ferreira, M.E.; Carvalho, P.; Vieira, L.C.G.; Huszar, V.L.M. & Nabout, J.C. 2016. Environmental factors addecting chlorophyll-a concentration in tropical floodplain, Central Brazil. Environ Monit Assess. 188(11):611. DOI: 10.1007/s10661-016-5622-7

    Moura, M.E.P.; Rocha, L.S. & Nabout, J.C. 2017. Effects of global climate change on chlorophyll-a concentrations in a tropical aquatic system during a cyanobacterial bloom: a microcosm study. AMBIAGUA. 12(3):390-404. DOI: 10.4136/1980-993X

    Nessimian, J.L.; Venticinque, E.M.; Zuanon, J.; Marco Jr, P.; Gordo, M.; Fidelis, L.; Batista, J.D. & Juen, L. 2008. Land use, habitat integrity, and aquatic insect assemblages in Central Amazonian streams. Hydrobiologia. 614 (117):117–131. DOI: 10.1007/s10750-008-9441-x

    Pérez, G.L.; Torremorell, A.; Mugni, H.; Rodriguez, P.; Rodriguez, R.; Vera, M.S.; Nascimento, M.; Allende, L.; Bustingorry, J.; Escaray, R.; Ferraro, M.; Izaguirre, I.; Pizarro, H.; Bonetto, C.; Morris, D.P. & Zagarese, A.H. 2007. Effects of the herbicide roundup on freshwater microbial communities: a mesocosm study. Ecol Appl. 17:2310–2322.

    Pinto, J.F. & Antunes, S.C. 2020. Biomanipulação para o controlo da eutrofização. Ver Ciência Elem. 8(1):1-5. DOI:10.24927/rce2020.010

    R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

    Ramos-Filho, M.; Menezes, L.; Saroba, C. & Thomé, M. P. 2015. Descrição do processo de recuperação da mata ciliar de um riacho no município de Varre-Sai-RJ. REINOEC. 1(11):143-286. DOI: 10.20951/2446-6778/v1n1a11

    Rasconi, S., Barbone, È., Marañón, J. C., & Vespoli, M. T. M. V. S. 2015. Increased temperature alters the structure and functioning of freshwater lake food webs. Glob Change Biol, 21(6), 2274-2288. doi:10.1111/gcb.12834

    Reynolds, C.S. 2006. The Ecology of Phytoplankton. 1st Ed. Cambridge University Press. 552p.

    Reynolds, C.S. 1984. The Ecology of Freshwater Phytoplankton. 1st Ed. Cambridge University Press. 396p.

    Rocha, C.H.B.; Freitas, F.A. & Silva, T.M. 2014. Alterações em variáveis limnológicas de manancial de Juiz de Fora devido ao uso da terra. RBEAA. 18(4):431–436. DOI: 10.1590/S1415-43662014000400011

    Rozemeijer, J.; Noordhuis, R.; Ouwerkerk, K.; Dionisio Pires, M.; Blauw, A.; Hooijboer, A. & van Oldenborgh, G.J. 2021. Climate variability effects on eutrophication of groundwater, lakes, rivers, and coastal waters in the Netherlands. Sci Total Environ. 771. DOI: 10.1016/j.scitotenv.2021.145366

    Silva, C.L. 2016. Análise morfológica, física e química de duas ocorrências erosivas lineares de grande porte no Município de Morrinhos (GO). Master Dissertation. Universidade Estadual de Goiás. 119p.

    Smith, V.H. 1983. Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science. 221(4611): 669-671.

    Smith, V.H. & Schindler, D.W. 2009. Eutrophication science: where do we go from here? Trends Ecol Evol. 24(4):201–207. DOI:10.1016/j.tree.2008.11.009

    Striebel, M.; Singer, G.; Stibor, H. & Andersen, T. 2012.“Trophic overyielding”: Phytoplankton diversity promotes zooplankton productivity. Ecology. 93(12): 2719-2727. DOI: 10.2307/41739628

    Tambosi, L.R.; Vidal, M.M.; Ferraz, S.F.B. & Metzger, J.P. 2015. Funções eco-hidrológicas das florestas nativas e o Código Florestal. Estud av. 29(84): 151-162. DOI: 10.1590/S0103-40142015000200010

    Turunen, J.; Elbrecht, V.; Steinke, D. & Aroviita, J. 2021. Riparian forests can mitigate warming and ecological degradation of

    agricultural headwater streams. Freshw Biol. 66(4): 785–798. DOI: 10.1111/fwb.13678

    Veras, D.S.; Castro, E.R.; Lustosa, G.S; Azevêdo, C.A.S. & Juen, L. 2019. Evaluating the habitat integrity index as a potential surrogate for monitoring the water quality of streams in the cerrado-caatinga ecotone in northern Brazil. Environ Monit Assess. 191:562. DOI:10.1007/s10661-019-7667-x

    Viana, C.; Campos, I.; Veras, D. &Lustosa, G. S. 2020. Environmental gradients as filters on the composition of aquatic insect of the Cerrado-Caatinga, Brazil. Acta Brasil. 4:142-148. DOI: 10.22571/2526-4338362.

    Wang, Q.; Lyu, Z.; Omar, S.; Cornell, S.; Yang, Z. & Montagnes, D.J.S. 2019. Predicting temperature impacts on aquatic productivity: Questioning the metabolic theory of ecology’s “canonical” activation energies. Limnol Oceanogr. 64:1172–1185. DOI:10.1002/lno.11105

    Warren, D.L.; Glor, R.E. & Turelli, M. 2008. Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution. 62(11):2868–2883. DOI: 10.1111/j.1558-5646.2008.00482.x

    Wetzel, R.G. and Likens, G.E. 2000. Limnological Analysis. 1st. Ed. Springer Science & Business Media. 429p.

    Wilhelm, C.; Becker, A.; Toepel, J.; Vieler, A. & Rautenberger, R. 2004. Photophysiology and primary production of phytoplankton in freshwater. Physiol Plantarum.120:347-357.

    Zoboli, O.; Schilling, K.; Ludwig, A.L.; Kreuzinger, N. & Zessner, M. 2018. Primary productivity and climate change in Austrian lowland rivers. Water Sci.Techn. 77(2), 417–425. DOI: 10.2166/wst.2017.553

Brazilian Journal of Aquatic Science and Technology

Environmental Sciences, Aquatic and Coastal Environments.

BJAST adopts the policy of continuous publication of articles. Therefore, whenever a manuscript is approved for publication, it will be immediately available for reading.

Access journal