Ocean acidification, a consequence of increasing atmospheric CO2, results from oceans absorbing about one-third of CO2 emissions, leading to a decrease in pH. This phenomenon can cause sublethal or lethal damage to marine organisms some of which are crucial for coastal ecosystems and human economies. Understanding how to reproduce acidified seawater in a laboratory is essential for assessing potential impacts. Our protocol uses a CO2-enriched atmosphere to determine the pH tolerance of Mysidopsis juniae, exposed at pH 6.8 and 7.0, and larvae of Arbacia lixula, exposed at pH 7.2. M. juniae showed lethal responses at pH 6.8 ± 0.3, while A. lixula exhibited delayed larval development as a sublethal reaction at pH 7.2 ± 0.3. However, these pH levels are extreme and cannot be predicted for future oceanic conditions. Other studies have indicated negative sublethal effects on similar organisms at higher pH levels than those observed in this study. Continued experiments are necessary to prepare for and inform about the dangers of ocean acidification, and also to develop other types of studies.
Ang, L., Yongming, L., Xi, C., Zhongyi, Z., & Yu, P. (2022). Review of CO2 sequestration mechanism in saline aquifers. Natural Gas Industry B, 9(4), 383–393. https://doi.org/10.1016/j.ngib.2022.07.002
Bach, L. T. (2015). Reconsidering the role of carbonate ion concentration in calcification by marine organisms. Biogeosciences, 12(16), 4939–4951. https://doi.org/10.5194/bg-12-4939-2015
Bautista-Chamizo, E., Sendra, M., De Orte, M. R., & Riba, I. (2019). Comparative effects of seawater acidification on microalgae: Single and multispecies toxicity tests. Science of the Total Environment, 649, 224–232. https://doi.org/10.1016/j.scitotenv.2018.08.225
BIOACID. (n.d.). The KOSMOS mesocosms. Biological Impacts of Ocean Acidification. https://www.bioacid.de/the-kosmos-mesocosms/?lang=en
Burgess, R. M., Ho, K. T., Morrison, G. E., Chapman, G., & Denton, D. L. (1996). Marine Toxicity Identification Evaluation (TIE). National Health and Environmental Effects Research Laboratory.
Cooley, S., Schoeman, D., Bopp, L., Boyd, P., Donner, S., Ghebrehiwet, D. Y., Ito, S.-I., Kiessling, W., Martinetto, P., Ojea, E., Racault, M.-F., Rost, B., & Skern-Mauritzen, M. (2022). Oceans and Coastal Ecosystems and Their Services. In Climate Change 2022 – Impacts, Adaptation and Vulnerability (pp. 379–550). https://doi.org/10.1017/9781009325844.005.379
Doney, S. C., Fabry, V. J., Feely, R. A., & Kleypas, J. A. (2009). Ocean acidification: The other CO2 problem. Annual Review of Marine Science, 1, 169–192. https://doi.org/10.1146/annurev.marine.010908.163834
Duarte, C., López, J., Benítez, S., Manríquez, P. H., Navarro, J. M., Bonta, C. C., Torres, R., & Quijón, P. (2016). Ocean acidification induces changes in algal palatability and herbivore feeding behavior and performance. Oecologia, 180(2), 453–462. https://doi.org/10.1007/s00442-015-3459-3
Espinel-Velasco, N., Hoffmann, L., Agüera, A., Byrne, M., Dupont, S., Uthicke, S., Webster, N. S., & Lamare, M. (2018). Effects of ocean acidification on the settlement and metamorphosis of marine invertebrate and fish larvae: A review. Marine Ecology Progress Series, 606, 237–257. https://doi.org/10.3354/meps12754
Falkenberg, L. J., Russell, B. D., & Connell, S. D. (2013). Future herbivory: The indirect effects of enriched CO2 may rival its direct effects. Marine Ecology Progress Series, 492, 85–95. https://doi.org/10.3354/meps10491
Gattuso, J.-P., & Hansson, L. (2017). The Ocean Revealed (A. Euzen, F. Gaill, D. Lacroix, & P. Cury (eds.); CNRS EDITI).
Gianguzza, P., Visconti, G., Gianguzza, F., Vizzini, S., Sarà, G., & Dupont, S. (2014). Temperature modulates the response of the thermophilous sea urchin Arbacia lixula early life stages to CO2-driven acidification. Marine Environmental Research, 93, 70–77. https://doi.org/10.1016/j.marenvres.2013.07.008
Grear, J. S. (2016). Translating crustacean biological responses from CO2 bubbling experiments into population-level predictions. Population Ecology, 58(4), 515–524. https://doi.org/10.1007/s10144-016-0562-1
Greenstein, D., Alzadjali, S., & Bay, S. (1995). Toxicity of ammonia to pacific purple sea urchin (Strongylocentrotus purpuratus) embryos. Southern California Coastal Water …. http://ftp.sccwrp.org/pub/download/DOCUMENTS/AnnualReports/1994_95AnnualReport/ar07.pdf
Haddout, S., Priya, K. L., Hoguane, A. M., Casila, J. C. C., & Ljubenkov, I. (2022). Relationship of salinity, temperature, pH, and transparency to dissolved oxygen in the Bouregreg estuary (Morocco): First results. Water Practice and Technology, 17(12), 2654–2663. https://doi.org/10.2166/wpt.2022.144
Hall-Spencer, J. M., & Harvey, B. P. (2019). Ocean acidification impacts on coastal ecosystem services due to habitat degradation. Emerging Topics in Life Sciences, 3(2), 197–206. https://doi.org/10.1042/ETLS20180117
Hashimoto, K. (2019). Global Temperature and Atmospheric Carbon Dioxide Concentration. In Global Carbon Dioxide Recycling (pp. 5–17). https://doi.org/10.1007/978-981-13-8584-1_3
Henley, S. F., Cavan, E. L., Fawcett, S. E., Kerr, R., Monteiro, T., Sherrell, R. M., Bowie, A. R., Boyd, P. W., Barnes, D. K. A., Schloss, I. R., Marshall, T., Flynn, R., & Smith, S. (2020). Changing Biogeochemistry of the Southern Ocean and Its Ecosystem Implications. In Frontiers in Marine Science (Vol. 7, Issue July). https://doi.org/10.3389/fmars.2020.00581
Hurd, C. L., Lenton, A., Tilbrook, B., & Boyd, P. W. (2018). Current understanding and challenges for oceans in a higher-CO2 world. Nature Climate Change, 8(8), 686–694. https://doi.org/10.1038/s41558-018-0211-0
IPCC. (2022). Summary for policymakers. In Climate Change 2022: Impacts, Adaptation and Vulnerability (Vol. 9781107025, pp. 3–22). https://doi.org/10.1017/CBO9781139177245.003
Jiang, L. Q., Carter, B. R., Feely, R. A., Lauvset, S. K., & Olsen, A. (2019). Surface ocean pH and buffer capacity: past, present and future. Scientific Reports, 9(1), 1–11. https://doi.org/10.1038/s41598-019-55039-4
Landes, A., & Zimmer, M. (2012). Acidification and warming affect both a calcifying predator and prey, but not their interaction. Marine Ecology Progress Series, 450(Lubchenco 1983), 1–10. https://doi.org/10.3354/meps09666
Lee, D. H., Nam, S. E., Eom, H. J., & Rhee, J. S. (2020). Analysis of effects of environmental fluctuations on the marine mysid Neomysis awatschensis and its development as an experimental model animal. Journal of Sea Research, 156(December), 101834. https://doi.org/10.1016/j.seares.2019.101834
Leseurre, C. (2022). Mécanismes de contrôle de l’absorption de CO2 anthropique et de l’acidification des eaux dans les océans Atlantique Nord et Indien Austral. Sorbonne Université.
Lindsey, R. (2023). Climate Change: Atmospheric Carbon Dioxide. NOAA. https://www.climate.gov/news-features/understanding-climate/climate-change-atmospheric-carbon-dioxide
Oliveira, T. M. N. D., Vaz, C., Kleine, T., Matias, W. G., Böhm, R. F. S., Gonçalves, R. A., Tortelli, T. S., & Barros, V. G. (2011). Influence of abiotic factors in the cultivation of Mysidopsis juniae. Toxicology Letters, 205(July), S133. https://doi.org/10.1016/j.toxlet.2011.05.474
Passarelli, M. C., Cesar, A., Riba, I., & DelValls, T. A. (2017). Comparative evaluation of sea-urchin larval stage sensitivity to ocean acidification. Chemosphere, 184, 224–234. https://doi.org/10.1016/j.chemosphere.2017.06.001
Raven, J., Caldeira, K., Elderfield, H., Hoegh-Guldberg, O., Liss, P., Riebesell, U., Shepherd, J., Turley, C., & Watson, A. (2005). Ocean acidification due to increasing atmospheric carbon dioxide. Coral Reefs, 12/05(June), 68. http://eprints.ifm-geomar.de/7878/1/965_Raven_2005_OceanAcidificationDueToIncreasing_Monogr_pubid13120.pdf
Reidenbach, L. B., Dudgeon, S. R., & Kübler, J. E. (2022). Ocean acidification and ammonium enrichment interact to stimulate a short-term spike in growth rate of a bloom forming macroalga. Frontiers in Marine Science, 9(December), 1–19. https://doi.org/10.3389/fmars.2022.980657
Riebesell, U., Fabry, V. J., & Hansson, L. (2010). Guide to best practices for ocean acidification research and data reporting. In European commission.
Rogelj, J., Popp, A., Calvin, K. V., Luderer, G., Emmerling, J., Gernaat, D., Fujimori, S., Strefler, J., Hasegawa, T., Marangoni, G., Krey, V., Kriegler, E., Riahi, K., Van Vuuren, D. P., Doelman, J., Drouet, L., Edmonds, J., Fricko, O., Harmsen, M., … Tavoni, M. (2018). Scenarios towards limiting global mean temperature increase below 1.5 °c. Nature Climate Change, 8(4), 325–332. https://doi.org/10.1038/s41558-018-0091-3
Sperfeld, E., Mangor-Jensen, A., & Dalpadado, P. (2017). Effects of increasing pCO2 on life history traits and feeding of the littoral mysid Praunus flexuosus. Marine Biology, 164(8), 1–12. https://doi.org/10.1007/s00227-017-3203-0
Sweetman, A. K., Thurber, A. R., Smith, C. R., Levin, L. A., Mora, C., Wei, C. L., Gooday, A. J., Jones, D. O. B., Rex, M., Yasuhara, M., Ingels, J., Ruhl, H. A., Frieder, C. A., Danovaro, R., Würzberg, L., Baco, A., Grupe, B. M., Pasulka, A., Meyer, K. S., … Roberts, J. M. (2017). Major impacts of climate change on deep-sea benthic ecosystems. Elementa, 5. https://doi.org/10.1525/elementa.203
Takahashi, T., Sutherland, S. C., Feely, R. A., & Wanninkhof, R. (2006). Decadal change of the surface water pCO2 in the North Pacific: A synthesis of 35 years of observations. Journal of Geophysical Research: Oceans, 111(7), 1–20. https://doi.org/10.1029/2005JC003074
Trabalka, J. R. (1985). Atmospheric Carbon Dioxide and the Global Carbon Cycle. United States Department of Ener.
Visconti, G., Gianguzza, F., Butera, E., Costa, V., Vizzini, S., Byrne, M., & Gianguzza, P. (2017). Morphological response of the larvae of Arbacia lixula to near-future ocean warming and acidification. ICES Journal of Marine Science, 74(4), 1180–1190. https://doi.org/10.1093/icesjms/fsx037
Environmental Sciences, Aquatic and Coastal Environments.
BJAST adopts the policy of continuous publication of articles. Therefore, whenever a manuscript is approved for publication, it will be immediately available for reading.