• Abstract

    Uso de um sistema de vídeo para estudo ecológico do macro e megazooplâncton em águas costeiras

    Published date: 18/06/2025

    Underwater images obtained using digital cameras have become one of the main tools for studying the behavior and ecology of marine organisms in their native environment. In this research, the acquisition of images by trawling and vertical profiling with a commercial camera mounted on a steel structure called a Bell was tested. Fifty-four videos of longer horizontal trawls (stratified) (10 minutes) and 27 videos of short vertical profiling (3 minutes) were obtained, and the quality of the images associated with the identification of organisms was evaluated. The best way to work with the Bell, the need for accessories and adaptations and the protocol for its use were determined, as well as the relationship between water transparency (Secchi disk) and the possibility of identifying and quantifying planktonic forms in the images. The results indicate that the use of the Bell at low speed, i.e., in vertical profiling and with lighting, presented the best results and greater efficiency in identifying the occurrences of organisms. The relationship between water transparency and obtaining good quality images was observed more reliably in conditions of Secchi disk measurements greater than 2.5 m. Due to the water transparency conditions and the variability in the occurrence of organisms, the probability of recording gelatinous forms was 37.5% of the total field trips. Analysis of the videos indicated a possible vertical migration behavior of the Hydrozoa Olindias sambaquiensis. The images also highlighted the abundance of Pseudo-TEPs (Transparent Exopolymer Particles), structures believed to play a relevant role in the pelagic ecology of coastal waters.

  • References

    De Barba, F. F. M., Bazi, C. C., Pessatti, M. L., Resgalla Jr., C. 2016. Macromedusae of Southern Brazil: temporal variation, population structure and biochemical composition. Braz. J.Oceanogr., 64(2): 127-136. http://dx.doi.org/10.1590/s1679-87592016101806402.

    Boltovskoy, D. 1981. Atlas del zooplankton del Atlantico sur occidental y metodos de trabajo con el zooplankton marino. INIDEP, Mar del Plata. 936pp.

    Brodeur, R.D., Mills, C.E. Overland, J.E., Walters, G.E., Schumacher, J.D. 1999. Evidence for a substantial increase in gelatinous zooplankton in the Bering Sea, with possible links to climate change. Fish. Oceanogr. 8: 296-306.

    Brundage Jr., W.L., Buchanan, C.L., Patterson, R.B. 1967. Search and serendipity. In: Hersey, J.B. (ed.), Deep Sea Photography. Johns Hopkins Univ. Press, Baltimore, 75-87.

    Chiaverano, L. M. 2001. Historia de vida de Olindias sambaquiensis (Limnomedusae, Olindiidae) durante su fase sexual en la zona de El Rincón (Buenos Aires, Argentina): estructura de tallas, crecimiento, desarrollo e influencia ambiental en sus agregaciones. Dissertação (Mestrado), Universidad Nacional de Mar del Plata, Buenos Aires, 70pp.

    Davis, C.S., Gallager, S.M., Solow, A.R. 1992. Microaggregations of oceanic plankton observed by towed video microscopy. Science, 257: 230-232.

    De Barba, F.F.M., Bazi, C.C., Pessatti, M.L., Resgalla Jr, C. 2016. Macromedusae of southern Brazil: temporal variation, population structure and biochemical composition. Braz. J. Oceanogr. 64: 127-136.

    Gibbons, M.J., Stuart, V., Verheye, H.M. 1992. Trophic ecology of carnivorous zooplankton in the Benguela. S. Afr. J. Mar. Sci. 12: 421-437.

    Graham, W.M., Martin, D.L., Martin, J.C. 2003. In situ quantification and analysis of large jellyfish using a novel video profiler. Mar. Ecol. Prog. Ser. 254: 129-140.

    Graham, W.M., Pages, F., Hamner, W.M. 2001. A physical context for gelatinous zooplankton aggregations: a review. Hydrobiologia, 451: 199-212.

    Grant, S., Ward, P., Murphy, E., Bone, D., Abbott, S. 2000. Field comparison of an LHPR net sampling system and an Optical Plankton Counter (OPC) in the Southern Ocean. J. Plankton Res. 22: 619-638.

    Grassle, J.F., Sanders, H.L., Heisler, R.R., Rowe, G.T., Mclellan, T. 1975. Pattern and zonation: a study of the bathyal megafauna using the research submersible Alvin. Deep-Sea Res. 22: 457-481.

    Hamner, W.M., Madin, L.P., Alldredge, A.L., Gilmer, R.W., Hamner, P.P. 1975. Underwater observations of gelatinous zooplankton: sampling problems, feeding biology, and behavior. Limnol. Oceanogr. 20(6): 907-917.

    Herman, A.W. 1992. Design and calibration of a new optical plankton counter capable of sizing small zooplankton. Deep-Sea Res. 39: 395-415.

    Herman, A.W. 1988. Simultaneous measurement of zooplankton and light attenuance with a new optical plankton counter. Cont. Shelf Res. 8: 205-221.

    Laval, P., Braconnot, J.C., Carré, C., Goy, J., Morand, P., Mills, C.E. 1989. Smallscale distribution of macroplankton and micronekton in the Ligurian Sea (Mediterranean Sea) as observed from the manned submersible Cyana. J. Plankton Res. 11(4): 665-685.

    Lenz, J., Schnack, D., Petersen, D., Kreikemeier, J., Hermann, B., Mees, S., Wieland, K. 1995. The Ichthyoplankton Recorder: a video recording system for in sity studies of small-scale plankton distribution patterns. ICES J. Mar. Sci. 52: 409-417.

    Madin, L.P. 1988. Feeding behavior of tentaculate predators: in situ observations and a conceptual model. Bull. Mar. Sci. 43: 413-429.

    Olesen, N.J. 1995. Clearance potential of jellyfish Aurelia aurita, and predation impact on zooplankton in a shallow cove. Mar. Ecol. Prog. Ser. 124: 63-72.

    Omori, M., Hamner, W.M. 1982. Patchy distribution of zooplankton: behavior, population assessment and sampling problems. Mar. Biol. 72: 193-200.

    Ortner P.B., Cummings, S.R., Aftring, R.P., Edgerton, H.E. 1979. Silhouette photography of oceanic zooplankton. Nature, 277, 50-51. Passow, U. 2002. Transparent exopolymer particles (TEP) in aquatic environments. Progress Oceanogr. 55 (3-4): 287-333. http://dx.doi.org/10.1016/s0079-6611(02)00138-6.

    Passow, U., Shipe, R.F., Murray, A., Pak, D.K., Brzezinski, M.A., Alldredge, A.L. 2001. The origin of transparent exopolymer particles (TEP) and their role in the sedimentation of particulate matter. Continental Shelf Res. 21(4): 327-346. http://dx.doi.org/10.1016/s0278-4343(00)00101-1.

    Pogodin, A.G. 1998. Aurelia limbata—a new component of the scyphomedusan fauna of the Sea of Japan. Russ. J. Mar. Biol. 24(4): 264-265.

    Postel, L., Fock, H., Hagen, W. 2000. Biomass and Abundance. In: Harris, R.P.; Wiebe, P.H.; Lenz, J.; Skjoldal, H.R.; Huntley, M. (eds), Zooplankton methodology manual. Academic Press, San Diego, 83-192.

    Patwa, A., Thiéry, A., Lombard, F., Lilley, M.K.S., Boisset, C., Bramard, J-F, Bottero, J-Y, Barthélémy, P. 2015. Accumulation of nanoparticles in “jellyfish” mucus: a bio-inspired route to decontamination of nano-waste. Scientific Reports, 5(1): 1-8. http://dx.doi.org/10.1038/srep11387.

    Resgalla Jr, C. 2011. The holoplankton of the Santa Catarina coast, southern Brazil. An Acad. Bras. Cienc. 83: 575-588.

    Resgalla Jr., C., Kruger, K.C., Costa, M.A.L.M., Sarraff, T.E.S., Silva, A.L. 2023.

    Urticating macromedusae and stinging bathers on the South Atlantic coast: Oceanographic and climatological conditions of Olindias sambaquiensis (Müller, 1861) outbreaks. Cont. Shelf Res. 269: 105-128. https://doi.org/10.1016/j.csr.2023.105128.

Brazilian Journal of Aquatic Science and Technology

Environmental Sciences, Aquatic and Coastal Environments.

BJAST adopts the policy of continuous publication of articles. Therefore, whenever a manuscript is approved for publication, it will be immediately available for reading.

Access journal