With the advancement of technology, the use of mobile devices and the rapid generation of data by electronic devices, it has become increasingly strategic for managers to use tools capable of capturing and analyzing the data generated, in order to turn it into useful information. This article addresses a tool known as Big Data for data analysis and the provision of relevant information that can contribute to decision-making by agents involved with the tourism sector. It aims to demonstrate the application of this method and the opportunities for data analysis using Big Data, exploring aspects related to the adoption of this tool. A qualitative descriptive research was used, with a literature review as the main data collection instrument, focusing on the use of advanced technologies. The data were interpreted in light of the technological and competitive demands of tourism services. This study addresses some ways of using this tool, and the importance of using innovative and up-to-date techniques to understand the trends and transformations in tourism flows and improve the care of consumers in the growing tourism market. It exemplifies through two cases; the State of Espírito Santo, Brazil, and the city of Buenos Aires, Argentina - destinations that already use Big Data to assist in decision-making.
Amadeus Extreme Search. (n.d.). Retrieved from https://amadeus.com/pt/portfolio/agencias-de-viagens-de-varejo/amadeus-extreme-search
Aprobación de la ley de incentivos fiscales para el sector hotelero. (n.d.) Retrieved from https://www.buenosaires.gob.ar/noticias/aprueban-la-ley-de-incentivos-fiscales-para-el-sector-hotelero
Beni, M. C. (2003). Como Certificar o Turismo Sustentável? Revista Turismo em Análise, 14(2), 5-16.
Brandão, F. & Costa, C. (2008). Novas dinâmicas e novas formas de gestão para o sector do turismo ao nível local: o caso da criação de Observatórios Regionais de Turismo. In: CAVACO, C. (ed.) Turismo, Inovação e Desenvolvimento - Actas do I Seminário Turismo e Planeamento do Território. Lisboa: Centro de Estudos Geográficos, Universidade de Lisboa, 255-280.
Brasil. Ministério do Turismo. (2003). Plano Nacional de Turismo: Diretrizes, Metas e Programas 2003-2007. 12. Retrieved from http://www.turismo.gov.br/siten.d.efault/turismo/o_ministerio/publicacoen.d.ownloads_publicacoes/plano_nacional_turismo_2003_2007.pdf
Brasil. Ministério do Turismo. (2018). Plano Nacional de Turismo 2018-2022. Brasília, 15. Retrieved from https://cultura.rs.gov.br/upload/arquivos/carga20180322/28162245-pnt-2018-2022.pdf
Brasil. Secretaria de Turismo do Estado do Espírito Santo. (2017). Pesquisa de Fluxo Turístico por Big Data - Descritivo Metodológico. Retrieved from https://observatoriodoturismo.es.gov.br/descritivo-metodologico
Cardamone, R. (2016, May 25). A cidade e o futuro: como as cidades mais inteligentes vão transformar a vida da população. COMURB. Sociedade de Projetos Urbanísticos Ltda. Retrieved from https://comurb.com.br/a-cidade-e-o-futuro-como-cidades-mais-inteligentes-vao-transformar-a-vida-da-populacao/
CISCO. (2019, February 18) Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2017–2022 White Paper. Retrieved from https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-738429.html
Contreras, T. C.; Franch, D. B. (2013) Observatorio en turismo: organismo inteligente para la toma de decisiones en el destino. Revista Iberoamericana de Turismo - RITUR, 3(2), 25-34.
Correia, E.; Dinis, G.; Milheiro, E. (2011). Strategic Tools for Decision Support: The Regional Tourism Observatory of Alentejo. Book Of Proceedings – International Conference On Tourism & Management Studies, 1(1), 143-150.
Davenport, T. H. (2013). At the Big Data Crossroads: turning towards a smarter travel experience. Amadeus IT Group. Retrieved from http://amadeusblog.com/wp-content/uploads/Amadeus-Big-Data-Report.pdf
Habegger, B., Hasan, O., Brunie, L., Bennani, N., Kosch, H., Damiani, E. (2014). Personalization vs. Privacy in Big Data Analysis. International Journal of Big Data, 25-35.
INVAT.TUR. (2015). Big Data: retos y oportunidades para el turismo. Retrieved from https://www.ithotelero.com/portfolio-item/big-data-retos-y-oportunidades-para-el-turismo/
Minelli, M.; Chambers, M.; Dhiraj, A. (2013). Big Data Big Analytics: Emerging Business Intelligence and Analytic trends for today's businesses. (1st ed.) Hoboken, New Jersey: John Wiley and Sons Inc.
Observatório Turístico. (n.d.) Retrieved from https://turismo.buenosaires.gob.ar/es/observatorio
OMT. (2000). Basic Concepts of The Tourism Satellite Account (TSA). Retrieved from http://statistics.unwto.org/sites/all/filen.d.ocpdf/concepts.pdf
OMT. (2008). International Recommendations for Tourism Statistics 2008. Department of Economic and Social Affairs, 83(1).
OMT. (2011). Tourism Towards 2030 / Global Overview. UNWTO 19th General Assembly.
OMT. (2018). About UNWTO. Retrieved from http://cf.cdn.unwto.org/sites/all/filen.d.ocpdf/aboutunwtojan2018web.pdf
OMT. (2019). World Tourism Day 2019_Technical Note. Retrieved from http://cf.cdn.unwto.org/sites/all/files/world_tourism_day_2019_technical_note.pdf
OMT. (2019, January). World Tourism Barometer. World Tourism Organization. 17 (1).
OMT. (n.d). UNWTO/WTCF City Tourism Performance Research Report for Case Study: “Buenos Aires, Argentina”. Retrieved from http://cf.cdn.unwto.org/sites/all/filen.d.ocpdf/buenosairescasestudy.pdf
Presentación del Sistema de Inteligencia Turística (SIT). (n.d.) Retrieved from https://turismo.buenosaires.gob.ar/es/article/noticia-la-ciudad-present%C3%B3-el-sistema-de-inteligencia-tur%C3%ADstica
Santos, G. N. C. ; Inácio,J.B. (2018). Observatório do Turismo e Big Data: a importância da informação e da tecnologia no desenvolvimento de destinos turísticos e sustentáveis. Caminhos da Geografia (UFU. Online), 19, 286-299.
Siodmok, A. (2017, July 24). From best practice to next practice. Government UK. Retrieved from https://openpolicy.blog.gov.uk/2017/07/24/from-best-practice-to-next-practice/
Sivarajah, U., Kamal, M. M., Irani, Z., Weerakkody, V. (2016). Critical analysis of Big Data challenges and analytical methods. Journal of Business Research, 70(1), 263-286. https://doi.org/10.1016/j.jbusres.2016.08.001
UNWTO partners with Telefónica to promote tourism sector digitalization. (2019, April 30). Retrieved from http://www2.unwto.org/press-release/2019-04-29/unwto-partners-telefonica-promote-tourism-sector-digitalization
Vale, S. (2013, June 27). Classification of Types of Big Data. Retrieved from https://statswiki.unece.org/display/bigdata/Classification+of+Types+of+Big+Data
Vassakis K., Petrakis E., Kopanakis I. (2018). Big Data Analytics: Applications, Prospects and Challenges. Springer International Publishing AG. Mobile Big Data, Lecture Notes on Data Engineering and Communications Technologies 10, 3-20. doi: 10.1007/978-3-319-67925-9_1
World Tourism Organization International Network of Sustainable Tourism Observatories. (n.d.) Retrieved from http://insto.unwto.org/
WTTC. (2018). TRAVEL & TOURISM ECONOMIC IMPACT 2018 BRAZIL. Retrieved from https://www.wttc.org/economic-impact/country-analysis/
Copyright (c) 2024 Alfredo Brito Aguiar, Andressa Szekut
Este trabalho está licenciado sob uma licença Creative Commons Attribution-ShareAlike 4.0 International License.
Uma plataforma internacional com a finalidade de promover e disseminar a pesquisa científica e tecnológica aplicada em turismo, hospitalidade e gastronomia.