• Resumo

    Simulação do comportamento estocástico do algoritmo KLMS com diferentes kernels

    Data de publicação: 04/09/2020

    ABSTRACT
    The kernel least-mean-square (KLMS) algorithm is a popular algorithm
    in nonlinear adaptive filtering due to its simplicity and
    robustness. In kernel adaptive filtering, the statistics of the input
    to the linear filter depends on the kernel and its parameters. Moreover,
    practical implementations on systems estimation require a
    finite non-linearity model order. In order to obtain finite order
    models, many kernelized adaptive filters use a dictionary of kernel
    functions. Dictionary size also depends on the kernel and its
    parameters. Therefore, KLMS may have different performances
    on the estimation of a nonlinear system, the time of convergence,
    and the accuracy using a different kernel. In order to analyze the
    performance of KLMS with different kernels, this paper proposes
    the use of the Monte Carlo simulation of both steady-state and the
    transient behavior of the KLMS algorithm using different types of
    kernel functions and Gaussian inputs.

Anais do Computer on the Beach

O Computer on the Beach é um evento técnico-científico que visa reunir profissionais, pesquisadores e acadêmicos da área de Computação, a fim de discutir as tendências de pesquisa e mercado da computação em suas mais diversas áreas.

Access journal