Identificação de Pragas e Doenças na Cultura da Soja por meio de um Sistema Computacional em Linguagem Natural
Data de publicação: 29/04/2021
Technology is becoming expressively popular among agribusiness producers and is progressing in all agricultural area. One of the difficulties in this context is to handle data in natural language to solve problems in the field of agriculture. In order to build up dialogs and provide rich researchers, the present work uses Natural Language Processing (NLP) techniques to develop an automatic and effective computer system to interact with the user and assist in the identification of pests and diseases in the soybean farming, stored in a database repository to provide accurate diagnoses to simplify the work of the agricultural professional and also for those who deal with a lot of information in this area. Information on 108 pests and 19 diseases that damage Brazilian soybean was collected from Brazilian bibliographic manuals with the purpose to optimize the data and improve production, using the spaCy library for syntactic analysis of NLP, which allowed the pre-process the texts, recognize the named entities, calculate the similarity between the words, verify dependency parsing and also provided the support for the development requirements of the CAROLINA tool (Robotized Agronomic Conversation in Natural Language) using the language belonging to the agricultural area.