Algoritmo de Treinamento para uma Rede SLFN com Projeção Aleatória e Margem Larga Learning Algorithm for an SLFN Network with Random Projection and Large Margin

Autores

  • Vítor Gabriel Reis Caitité Universidade Federal de Minas Gerais Belo Horizonte, Brasil
  • Raul Fonseca Neto Universidade Federal de Juiz de Fora Juiz de Fora, Brazil
  • Frederico Coelho Universidade Federal de Minas Gerais Belo Horizonte, Brasil
  • Antônio Pádua Braga Universidade Federal de Minas Gerais Belo Horizonte, Brasil

DOI:

https://doi.org/10.14210/cotb.v14.p202-208

Resumo

ABSTRACT
This work presents a large margin learning algorithm for single
hidden layer feedforward networks (SLFNs) with random weights
for the hidden neurons, called RP-IMA. This algorithm, applied to
binary classification problems, proposes randomly assignedweights
to the hidden layer and the use of an incremental margin algorithm
to calculate the weights of the output neuron of the SLFN. The
results showed that the proposed algorithm is capable to obtain
a large separation margin in the feature space and has its performance
less sensitive to variations in the network architecture, when
compared to Extreme Learning Machines.

Downloads

Publicado

03-05-2023

Edição

Seção

Artigos Completos