• Resumo

    Aplicação de técnicas de aprendizagem de máquina com seleção de variáveis na previsão de receitas públicas de 8 capitais

    Data de publicação: 03/05/2023

    ABSTRACT
    Forecasting public revenues at the municipal level is
    quite relevant for public administration in Brazil since
    it defines the budget of public policies. However, it is a
    complex process, and its consequences that permeate
    the divergence between executed and budgeted values
    have harmful effects on the population. So, aiming to
    mitigate this problem, we analyzed to optimize public
    revenue forecasting using feature selection through
    model combination (ensemble) of wrapper filter
    approaches. We assessed the proposed solution in light
    of the Brazilian Fiscal Responsibility Law, using São
    Luís, Maranhão, as a case study. Our results suggested
    that our approach is suitable for reducing complexity
    and improving forecasting performance. The method
    can be used in other Brazilian state capitals, boosting
    data-driven public policy-making.

Anais do Computer on the Beach

O Computer on the Beach é um evento técnico-científico que visa reunir profissionais, pesquisadores e acadêmicos da área de Computação, a fim de discutir as tendências de pesquisa e mercado da computação em suas mais diversas áreas.

Access journal