• Resumo

    Comparação de Algoritmos de Aprendizado de Máquina para Predição de Pontuação de Crédito

    Data de publicação: 03/05/2023

    ABSTRACT
    According to the Central Bank of Brazil, the total value of credit
    operations in Brazil reached R$4.2 trillion in May 2021. Financial
    institutions must consider the risk of default associated with each
    operation. Credit analysis, which evaluates this risk, can be performed
    using machine learning algorithms. These algorithms compare
    new loan proposals to historical data to estimate the default probability
    based on the proposal and proponent characteristics. The
    accuracy of the model is critical to the profitability of institutions,
    so choosing the right algorithm is crucial. This study compares
    the performance of machine learning algorithms on three public
    datasets in the task of credit risk estimation. The results show that a
    stack of multiple classifiers achieved the highest accuracy at 81.41%,
    followed by XGBoost at 80.87% and Regressão Logística at 80.48%.

Anais do Computer on the Beach

O Computer on the Beach é um evento técnico-científico que visa reunir profissionais, pesquisadores e acadêmicos da área de Computação, a fim de discutir as tendências de pesquisa e mercado da computação em suas mais diversas áreas.

Access journal