• Resumo

    Detecção de Hipertensão Arterial usando Fotopletismografia e Aprendizado de Máquina

    Data de publicação: 28/05/2024

    ABSTRACT
    Hypertension is the leading cause of death worldwide, considering
    cardiovascular diseases. In its initial phase, it presents no symptoms
    and is usually diagnosed when it has already affected other organs.
    Continuous blood pressure monitoring allows the discovery of the
    first temporary and sporadic events of hypertension. This work
    proposes using the non-invasive photoplethysmography (PPG)
    signal in conjunction with machine learning techniques to detect
    hypertension events. Morphological information is extracted from
    signals acquired from a database fed to models trained with the
    k-Nearest Neighbors (kNN) and Support Vector Machines (SVM)
    techniques. As a result, models were obtained with an accuracy of
    up to 82,96 ± 2,12(%), F1-Score of up to 81,90 ± 2,11(%), and false
    negative rate of up to 17,30 ± 2,90(%) for the kNN technique and
    SVM models have obtained performances of 76.80 ± 2.18(%), 78.20
    ± 2.65(%) and 3.60 ±3.48(%) accuracy, F1-Score, and false negative
    rate, respectively.

O Computer on the Beach é um evento técnico-científico que visa reunir profissionais, pesquisadores e acadêmicos da área de Computação, a fim de discutir as tendências de pesquisa e mercado da computação em suas mais diversas áreas.

Anais do Computer on the Beach

O Computer on the Beach é um evento técnico-científico que visa reunir profissionais, pesquisadores e acadêmicos da área de Computação, a fim de discutir as tendências de pesquisa e mercado da computação em suas mais diversas áreas.

Access journal