• Resumo

    Classificação de Fake News utilizando o dataset LIAR

    Data de publicação: 28/05/2024

    ABSTRACT
    Society grapples with an overwhelming and ceaseless flow of information,
    posing challenges to a media environment already afflicted
    by eroding trust in news. The use of Supervised Learning models
    for Fake News classification is widespread, yet their effectiveness
    hinges on the quality of labeled data. Constructing datasets that
    encompass the intricate nuances of disinformation across diverse
    contexts remains a formidable task. This study presents a comparative
    analysis of various Supervised Learning models for detecting
    and classifying misinformation. Leveraging the LIAR dataset, which
    employs six different classes to characterize the veracity of statements,
    our findings align with the accuracy benchmarks established
    by the LIAR authors. Specifically, the logistic regression model with
    stemming achieves an accuracy of 25%. The study suggests potential
    enhancements through the application of Deep Learning
    techniques, revealing a positive correlation between accuracy and
    the number of training epochs. Despite current accuracy levels,
    notably lower than datasets with binary classifiers, it is crucial
    to underscore the meticulous manual verification and annotation
    process executed by the LIAR dataset authors.

O Computer on the Beach é um evento técnico-científico que visa reunir profissionais, pesquisadores e acadêmicos da área de Computação, a fim de discutir as tendências de pesquisa e mercado da computação em suas mais diversas áreas.

Anais do Computer on the Beach

O Computer on the Beach é um evento técnico-científico que visa reunir profissionais, pesquisadores e acadêmicos da área de Computação, a fim de discutir as tendências de pesquisa e mercado da computação em suas mais diversas áreas.

Access journal