• Resumo

    Diferenciando o Não Diferenciável: Investigando problemas na diferenciação da ReLU no treinamento de modelos de Aprendizado Profundo

    Data de publicação: 27/05/2025

    ABSTRACT
    Activation functions are necessary for deep learning models to be
    able to represent non-linear relationships. Their derivative is required
    during training, however, many non differentiable activation
    functions are commonly used in neural networks, such as the Rectified
    Linear Unit (ReLU) and its variants. This paper discusses the
    impact of non differentiability on activation functions during the
    training phase, and how these functions compare to differentiable
    alternatives. To analyse this problem, we trained neural networks
    in an image classification problem using various activation functions.
    We showed that non-differentiable points occur rarely during
    training, especially in deep models, and have little to no negative
    impact in a model’s performance.

Anais do Computer on the Beach

O Computer on the Beach é um evento técnico-científico que visa reunir profissionais, pesquisadores e acadêmicos da área de Computação, a fim de discutir as tendências de pesquisa e mercado da computação em suas mais diversas áreas.

Access journal