• Resumo

    Sensibilidade dos invertebrados marinhos à acidificação da água do mar por uma atmosfera enriquecida com CO2

    Data de publicação: 07/10/2024

    A acidificação dos oceanos resulta da absorção de cerca de um terço das emissões de CO2 atmosférico levando a uma diminuição do pH da água do mar. Este fenómeno pode causar danos subletais ou letais aos organismos marinhos, alguns dos quais são cruciais para os ecossistemas costeiros e para a economia humana. Reproduzir a água do mar acidificada em laboratório é essencial para avaliar potenciais impactos sobre esses organismos em ensaios de tolerância. O protocolo executado utilizou uma atmosfera enriquecida com CO2 para determinar a tolerância ao pH de Mysidopsis juniae em ensaios letais e de larvas de Arbacia lixula em ensaios crônicos. M. juniae apresentou respostas letais em pH 6,8 ± 0,3, enquanto A. lixula exibiu atraso no desenvolvimento larval como reação subletal em pH 7,2 ± 0,3. No entanto, estes níveis de pH são extremos e não podem ser previstos para futuras condições oceânicas. Outros estudos indicaram efeitos subletais negativos em organismos semelhantes em níveis de pH mais elevados do que os avaliados neste estudo. Assim, são necessários outros estudos com parâmetros fisiológicos mais adequandos para uma correta e segura avaliação dos perigos da acidificação dos oceanos podem ocasionar para os organismos marinhos.

  • Referências

    Ang, L., Yongming, L., Xi, C., Zhongyi, Z., & Yu, P. (2022). Review of CO2 sequestration mechanism in saline aquifers. Natural Gas Industry B, 9(4), 383–393. https://doi.org/10.1016/j.ngib.2022.07.002

    Bach, L. T. (2015). Reconsidering the role of carbonate ion concentration in calcification by marine organisms. Biogeosciences, 12(16), 4939–4951. https://doi.org/10.5194/bg-12-4939-2015

    Bautista-Chamizo, E., Sendra, M., De Orte, M. R., & Riba, I. (2019). Comparative effects of seawater acidification on microalgae: Single and multispecies toxicity tests. Science of the Total Environment, 649, 224–232. https://doi.org/10.1016/j.scitotenv.2018.08.225

    BIOACID. (n.d.). The KOSMOS mesocosms. Biological Impacts of Ocean Acidification. https://www.bioacid.de/the-kosmos-mesocosms/?lang=en

    Burgess, R. M., Ho, K. T., Morrison, G. E., Chapman, G., & Denton, D. L. (1996). Marine Toxicity Identification Evaluation (TIE). National Health and Environmental Effects Research Laboratory.

    Cooley, S., Schoeman, D., Bopp, L., Boyd, P., Donner, S., Ghebrehiwet, D. Y., Ito, S.-I., Kiessling, W., Martinetto, P., Ojea, E., Racault, M.-F., Rost, B., & Skern-Mauritzen, M. (2022). Oceans and Coastal Ecosystems and Their Services. In Climate Change 2022 – Impacts, Adaptation and Vulnerability (pp. 379–550). https://doi.org/10.1017/9781009325844.005.379

    Doney, S. C., Fabry, V. J., Feely, R. A., & Kleypas, J. A. (2009). Ocean acidification: The other CO2 problem. Annual Review of Marine Science, 1, 169–192. https://doi.org/10.1146/annurev.marine.010908.163834

    Duarte, C., López, J., Benítez, S., Manríquez, P. H., Navarro, J. M., Bonta, C. C., Torres, R., & Quijón, P. (2016). Ocean acidification induces changes in algal palatability and herbivore feeding behavior and performance. Oecologia, 180(2), 453–462. https://doi.org/10.1007/s00442-015-3459-3

    Espinel-Velasco, N., Hoffmann, L., Agüera, A., Byrne, M., Dupont, S., Uthicke, S., Webster, N. S., & Lamare, M. (2018). Effects of ocean acidification on the settlement and metamorphosis of marine invertebrate and fish larvae: A review. Marine Ecology Progress Series, 606, 237–257. https://doi.org/10.3354/meps12754

    Falkenberg, L. J., Russell, B. D., & Connell, S. D. (2013). Future herbivory: The indirect effects of enriched CO2 may rival its direct effects. Marine Ecology Progress Series, 492, 85–95. https://doi.org/10.3354/meps10491

    Gattuso, J.-P., & Hansson, L. (2017). The Ocean Revealed (A. Euzen, F. Gaill, D. Lacroix, & P. Cury (eds.); CNRS EDITI).

    Gianguzza, P., Visconti, G., Gianguzza, F., Vizzini, S., Sarà, G., & Dupont, S. (2014). Temperature modulates the response of the thermophilous sea urchin Arbacia lixula early life stages to CO2-driven acidification. Marine Environmental Research, 93, 70–77. https://doi.org/10.1016/j.marenvres.2013.07.008

    Grear, J. S. (2016). Translating crustacean biological responses from CO2 bubbling experiments into population-level predictions. Population Ecology, 58(4), 515–524. https://doi.org/10.1007/s10144-016-0562-1

    Greenstein, D., Alzadjali, S., & Bay, S. (1995). Toxicity of ammonia to pacific purple sea urchin (Strongylocentrotus purpuratus) embryos. Southern California Coastal Water …. http://ftp.sccwrp.org/pub/download/DOCUMENTS/AnnualReports/1994_95AnnualReport/ar07.pdf

    Haddout, S., Priya, K. L., Hoguane, A. M., Casila, J. C. C., & Ljubenkov, I. (2022). Relationship of salinity, temperature, pH, and transparency to dissolved oxygen in the Bouregreg estuary (Morocco): First results. Water Practice and Technology, 17(12), 2654–2663. https://doi.org/10.2166/wpt.2022.144

    Hall-Spencer, J. M., & Harvey, B. P. (2019). Ocean acidification impacts on coastal ecosystem services due to habitat degradation. Emerging Topics in Life Sciences, 3(2), 197–206. https://doi.org/10.1042/ETLS20180117

    Hashimoto, K. (2019). Global Temperature and Atmospheric Carbon Dioxide Concentration. In Global Carbon Dioxide Recycling (pp. 5–17). https://doi.org/10.1007/978-981-13-8584-1_3

    Henley, S. F., Cavan, E. L., Fawcett, S. E., Kerr, R., Monteiro, T., Sherrell, R. M., Bowie, A. R., Boyd, P. W., Barnes, D. K. A., Schloss, I. R., Marshall, T., Flynn, R., & Smith, S. (2020). Changing Biogeochemistry of the Southern Ocean and Its Ecosystem Implications. In Frontiers in Marine Science (Vol. 7, Issue July). https://doi.org/10.3389/fmars.2020.00581

    Hurd, C. L., Lenton, A., Tilbrook, B., & Boyd, P. W. (2018). Current understanding and challenges for oceans in a higher-CO2 world. Nature Climate Change, 8(8), 686–694. https://doi.org/10.1038/s41558-018-0211-0

    IPCC. (2022). Summary for policymakers. In Climate Change 2022: Impacts, Adaptation and Vulnerability (Vol. 9781107025, pp. 3–22). https://doi.org/10.1017/CBO9781139177245.003

    Jiang, L. Q., Carter, B. R., Feely, R. A., Lauvset, S. K., & Olsen, A. (2019). Surface ocean pH and buffer capacity: past, present and future. Scientific Reports, 9(1), 1–11. https://doi.org/10.1038/s41598-019-55039-4

    Landes, A., & Zimmer, M. (2012). Acidification and warming affect both a calcifying predator and prey, but not their interaction. Marine Ecology Progress Series, 450(Lubchenco 1983), 1–10. https://doi.org/10.3354/meps09666

    Lee, D. H., Nam, S. E., Eom, H. J., & Rhee, J. S. (2020). Analysis of effects of environmental fluctuations on the marine mysid Neomysis awatschensis and its development as an experimental model animal. Journal of Sea Research, 156(December), 101834. https://doi.org/10.1016/j.seares.2019.101834

    Leseurre, C. (2022). Mécanismes de contrôle de l’absorption de CO2 anthropique et de l’acidification des eaux dans les océans Atlantique Nord et Indien Austral. Sorbonne Université.

    Lindsey, R. (2023). Climate Change: Atmospheric Carbon Dioxide. NOAA. https://www.climate.gov/news-features/understanding-climate/climate-change-atmospheric-carbon-dioxide

    Oliveira, T. M. N. D., Vaz, C., Kleine, T., Matias, W. G., Böhm, R. F. S., Gonçalves, R. A., Tortelli, T. S., & Barros, V. G. (2011). Influence of abiotic factors in the cultivation of Mysidopsis juniae. Toxicology Letters, 205(July), S133. https://doi.org/10.1016/j.toxlet.2011.05.474

    Passarelli, M. C., Cesar, A., Riba, I., & DelValls, T. A. (2017). Comparative evaluation of sea-urchin larval stage sensitivity to ocean acidification. Chemosphere, 184, 224–234. https://doi.org/10.1016/j.chemosphere.2017.06.001

    Raven, J., Caldeira, K., Elderfield, H., Hoegh-Guldberg, O., Liss, P., Riebesell, U., Shepherd, J., Turley, C., & Watson, A. (2005). Ocean acidification due to increasing atmospheric carbon dioxide. Coral Reefs, 12/05(June), 68. http://eprints.ifm-geomar.de/7878/1/965_Raven_2005_OceanAcidificationDueToIncreasing_Monogr_pubid13120.pdf

    Reidenbach, L. B., Dudgeon, S. R., & Kübler, J. E. (2022). Ocean acidification and ammonium enrichment interact to stimulate a short-term spike in growth rate of a bloom forming macroalga. Frontiers in Marine Science, 9(December), 1–19. https://doi.org/10.3389/fmars.2022.980657

    Riebesell, U., Fabry, V. J., & Hansson, L. (2010). Guide to best practices for ocean acidification research and data reporting. In European commission.

    Rogelj, J., Popp, A., Calvin, K. V., Luderer, G., Emmerling, J., Gernaat, D., Fujimori, S., Strefler, J., Hasegawa, T., Marangoni, G., Krey, V., Kriegler, E., Riahi, K., Van Vuuren, D. P., Doelman, J., Drouet, L., Edmonds, J., Fricko, O., Harmsen, M., … Tavoni, M. (2018). Scenarios towards limiting global mean temperature increase below 1.5 °c. Nature Climate Change, 8(4), 325–332. https://doi.org/10.1038/s41558-018-0091-3

    Sperfeld, E., Mangor-Jensen, A., & Dalpadado, P. (2017). Effects of increasing pCO2 on life history traits and feeding of the littoral mysid Praunus flexuosus. Marine Biology, 164(8), 1–12. https://doi.org/10.1007/s00227-017-3203-0

    Sweetman, A. K., Thurber, A. R., Smith, C. R., Levin, L. A., Mora, C., Wei, C. L., Gooday, A. J., Jones, D. O. B., Rex, M., Yasuhara, M., Ingels, J., Ruhl, H. A., Frieder, C. A., Danovaro, R., Würzberg, L., Baco, A., Grupe, B. M., Pasulka, A., Meyer, K. S., … Roberts, J. M. (2017). Major impacts of climate change on deep-sea benthic ecosystems. Elementa, 5. https://doi.org/10.1525/elementa.203

    Takahashi, T., Sutherland, S. C., Feely, R. A., & Wanninkhof, R. (2006). Decadal change of the surface water pCO2 in the North Pacific: A synthesis of 35 years of observations. Journal of Geophysical Research: Oceans, 111(7), 1–20. https://doi.org/10.1029/2005JC003074

    Trabalka, J. R. (1985). Atmospheric Carbon Dioxide and the Global Carbon Cycle. United States Department of Ener.

    Visconti, G., Gianguzza, F., Butera, E., Costa, V., Vizzini, S., Byrne, M., & Gianguzza, P. (2017). Morphological response of the larvae of Arbacia lixula to near-future ocean warming and acidification. ICES Journal of Marine Science, 74(4), 1180–1190. https://doi.org/10.1093/icesjms/fsx037

Brazilian Journal of Aquatic Science and Technology

Ciências Ambientais, Ambientes Aquáticos e Costeiros. 

BJAST adota a política de publicação contínua de artigos. Assim, sempre que um manuscrito for aprovado para publicação, estará imediatamente disponível para leitura. 

 

Access journal