LEI GERAL DE PROTEÇÃO DE DADOS E A REVISÃO DE DECISÕES AUTOMATIZADAS: OS MECANISMOS DE REGULAÇÃO BASEADOS EM UMA INTELIGÊNCIA ARTIFICIAL ÉTICA
DOI:
https://doi.org/10.14210/rdp.v17n2.p509-546Palavras-chave:
Lei Geral de Proteção de Dados. Sistemas de tomada de decisões automatizadas. Oversight Board. Regulação em Inteligência Artificial.Resumo
Contextualização: Esse artigo discute como a previsão da LGPD pode ser uma prerrogativa para regulação em inteligência artificial, através de mecanismos de prestação de contas que inclua auditorias baseadas em ética, Oversight Board e autorregulação setorial, após uma avaliação dos riscos para definir o escopo da empresa e a natureza do tratamento de dados.
Objetivos: Esse artigo tem como objetivo geral analisar propostas para regulação sobre sistemas de decisões automatizadas, com base na regulação prevista na Lei Geral de Proteção de Dados (LGPD) para pedidos de revisão de decisões automatizadas. Os sistemas de inteligência artificial possuem camadas de opacidade, em especial aqueles que tomam decisões sem a interferência de seres humanos. Em alguns sistemas, não é possível oferecer precisão absoluta sobre os caminhos que o algoritmo faz para determinada decisão. A LGPD previu a possibilidade de que o indivíduo requeira direito à explicação sobre essas decisões totalmente automatizadas.
Metodologia: Consiste numa pesquisa cuja metodologia adotada é a de revisão bibliográfica com base no método dedutivo.
Resultados: Sugere-se que os comitês de supervisão Oversight Board são organizações independentes ideais para sistemas automatizados que representam alto risco de violação de direitos ou padrões inadequados de decisões. Para outros níveis de risco, sugere-se que a autorregulação setorial pode ser utilizada para uma combinação de responsabilidade, ética e custo-benefício dividido entre as empresas.
Downloads
Referências
BIONI, B. Proteção de dados pessoais: a função e os limites do consentimento. Rio de Janeiro: Forense, 2019.
BIONI, B.; LUCIANO, M. O princípio da precaução na regulação de Inteligência Artificial: seriam as leis de proteção de dados o seu portal de entrada? In: FRAZÃO, A.; MULHOLLAND, C. (coords.) Inteligência artificial e direito: ética, regulação e responsabilidade. [livro eletrônico] 2ª ed, rev, São Paulo: Thomson Reuters Brasil, 2020.
BRASIL. Lei nº 13.709, de agosto de 2018. Disponível em: http://www.planalto.gov.br/ccivil_03/_ato2015-2018/2018/lei/L13709.htm Acesso em: 03 maio 2022.
BROWN, S.; DAVIDOVIC, J.; HASAN, A. The algorithm audit: Scoring the algorithms that score us. Big Data & Society, v. 8, n. 1, p. 205395172098386, jan. 2021. Disponível em: https://doi.org/10.1177/2053951720983865. Acesso em: 3 set 2022. DOI: https://doi.org/10.1177/2053951720983865
BURRELL, J. How the machine ‘thinks’: Understanding opacity in machine learning algorithms. Big Data & Society, v. 3, n. 1, p. 205395171562251, 5 jan. 2016. Disponível em: https://doi.org/10.1177/2053951715622512. Acesso em: 3 maio 2022. DOI: https://doi.org/10.1177/2053951715622512
CAMPISI, N. From Inherent Racial Bias to Inocrrect Data - The Problema With Current Credit Scoring Models. Forbes, 26 fev 2021. Disponível em: https://www.forbes.com/advisor/credit-cards/from-inherent-racial-bias-to-incorrect-data-the-problems-with-current-credit-scoring-models/ Acesso em: 03 set 2022.
DONEDA, D. Da privacidade à proteção de dados pessoais: elementos da formação da Lei Geral de Proteção de Dados. [livro eletrônico] 2ª ed, São Paulo: Thomson Reuters Brasil, 2020.
FLORIDI, L; COWLS, J. A Unified Framework of Five Principles for AI in Society. Issue 1, 23 jun. 2019. Disponível em: https://doi.org/10.1162/99608f92.8cd550d1. Acesso em: 3 maio 2022. DOI: https://doi.org/10.1162/99608f92.8cd550d1
FLORIDI, L.; TADDEO, M. What is data ethics? Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, v. 374, n. 2083, p. 20160360, 28 dez. 2016. Disponível em: https://doi.org/10.1098/rsta.2016.0360. Acesso em: 3 set 2022. DOI: https://doi.org/10.1098/rsta.2016.0360
FRAZÃO, A. Decisões algorítmicas e direito à explicação. Jota, 24 nov. 2021. Disponível em: https://www.jota.info/opiniao-e-analise/colunas/constituicao-empresa-e-mercado/decisoes-algoritmicas-e-direito-a-explicacao-24112021 Acesso em: 28 ago 2022.
GUTIERREZ, A. É possível confiar em um sistema de Inteligência Artificial? Práticas em torno da melhoria da sua confiança, segurança e evidências de Accountability. In: FRAZÃO, A.; MULHOLLAND, C. (coords.) Inteligência artificial e direito: ética, regulação e responsabilidade. [livro eletrônico] 2ª ed, rev, São Paulo: Thomson Reuters Brasil, 2020.
HARTMANN, I.A. et al. Policy Paper Regulação de Inteligência Artificial no Brasil. FGV Direito Rio, 2020. Disponível em: https://bibliotecadigital.fgv.br/dspace/bitstream/handle/10438/30078/PolicyPaperIAeGoverno.pdf?sequence=1&isAllowed=y Acesso em 03 set. 2022.
LEMOS, R. O Oversight Board do Facebook. ITS Rio, 12 mai 2020. Disponível em: https://itsrio.org/pt/artigos/o-oversight-board-do-facebook/ Acesso em: 03 set 2022.
LESSIG, L. Code version 2.0. New York: Basic Books, 2006.
MÖKANDER, J. et al. Ethics-Based Auditing of Automated Decision-Making Systems: Nature, Scope, and Limitations. Science and Engineering Ethics, v. 27, n. 4, 6 jul. 2021. Disponível em: https://doi.org/10.1007/s11948-021-00319-4. Acesso em: 3 set 2022. DOI: https://doi.org/10.1007/s11948-021-00319-4
MÖKANDER, J.; FLORIDI, L. Ethics-Based Auditing to Develop Trustworthy AI. Minds and Machines, v. 31, n. 2, p. 323-327, 19 fev. 2021. Disponível em: https://doi.org/10.1007/s11023-021-09557-8. Acesso em: 3 set 2022. DOI: https://doi.org/10.1007/s11023-021-09557-8
MORLEY, J et al. Operationalising AI ethics: barriers, enablers and next steps. AI & SOCIETY, 15 nov. 2021. Disponível em: https://doi.org/10.1007/s00146-021-01308-8. Acesso em: 3 set 2022. DOI: https://doi.org/10.1007/s00146-021-01308-8
PASQUALE, Frank. Black box society: The secret algorithms that control money and information. [S. l.: s. n.], 2016. 311 p. ISBN 9780674970847. DOI: https://doi.org/10.4159/harvard.9780674736061
RAJI, I.D. et al. Closing the AI accountability gap. In: FAT* '20: CONFERENCE ON
FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, Barcelona Spain. FAT* '20: Conference on Fairness, Accountability, and Transparency. New York, NY, USA: ACM, 2020. Disponível em: https://doi.org/10.1145/3351095.3372873. Acesso em: 3 set 2022. DOI: https://doi.org/10.1145/3351095.3372873
SCHERER, M.U. Regulating Artificial Intelligence Systems: Risks, Challenges, Competencies, and Strategies. Harvard Jounal of Law & Technlogy, v. 29, n. 2, Spring 2016. DOI: https://doi.org/10.2139/ssrn.2609777
VEGA, I.S. Inteligência artificial e tomada de decisão - a necessidade de agentes externos. In: FRAZÃO, A.; MULHOLLAND, C. (coords.) Inteligência artificial e direito: ética, regulação e responsabilidade. [livro eletrônico] 2ª ed, rev, São Paulo: Thomson Reuters Brasil, 2020.
WORLD ECONOMIC FORUM. AI Governance A holistic Approach to Implement Ethics into AI. Switzerland, 2019. Disponível em: https://weforum.my.salesforce.com/sfc/p/#b0000000GycE/a/0X000000cPl1/i.8ZWL2HIR_kAnvckyqVA.nVVgrWIS4LCM1ueGy.gBc Acesso em: 02 set. 2022.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Na qualidade de autor(es) da colaboração, original e inédita, sobre o qual me(nos) responsabilizo(amos) civil e penalmente pelo seu conteúdo, após ter lido as diretrizes para autores, concordado(amos) com o Regulamento da Revista Eletrônica Direito e Política e autorizo(amos) a publicação na rede mundial de computadores (Internet), permitindo, também, que sua linguagem possa ser reformulada, caso seja necessário, sem que me(nos) seja devido qualquer pagamento a título de direitos autorais, podendo qualquer interessado acessá-lo e/ou reproduzi-lo mediante download, desde que obedeçam os Direitos Autorais.