• Resumo

    ARTIFICIAL INTELLIGENCE AND INTERNATIONAL ARBITRATION

    Data de publicação: 15/09/2022

    Contextualização: Durante os primeiros dias da pesquisa em inteligência artificial, cientistas da computação tentaram criar algoritmos que imitassem a inteligência humana, tentando compreender e recriar processos cognitivos humanos.


    Objetivos: Este artigo examina se e como a inteligência artificial pode ser utilizada para auxiliar ou até mesmo substituir os árbitros em seu papel de resolver disputas. Notavelmente, este artigo não trata da arbitragem, que se refere a procedimentos em que os processos são simplificados pelo uso de tecnologia, como arquivamentos eletrônicos, mas onde árbitros humanos continuam a tomar decisões.

    Metodologia: A pesquisa utiliza o método indutivo e revisão de literatura.


    Resultado: A arbitragem internacional, sempre criticada por ser excessivamente cara e demorada, deve levar a sério a afirmação feita por certos desenvolvedores de inteligência artificial de que os computadores podem realizar o trabalho de 360.000 advogados. Mais estudos são necessários para determinar a técnica ideal para misturar os tomadores de decisão humanos com a inteligência artificial para obter os resultados mais eficientes.

  • Referências

    ALETRAS, Nikolaos et al. Predicting Judicial Decisions of the European Court of Human Rights: A Natural Language Processing

    Perspective, PeerJ Computer Science 2:e93 (2016).

    ALVAREZ, Gloria Maria et al., A Response to the Criticism Against ISDS by EFILA, 33(1) J. Int’l Arb. 1, 4 (2016).

    AMBROGI, Robert J. et al. Ethics Issues in Lawyers’ Use of Artificial Intelligence, presentation at 44th ABA National Conference on

    Professional Responsibility (1 June 2018).

    APOSTOLOVA, Kate; KUNG, Mike. Don’t Fear AI in IA, Global Arb. Rev. (27 Apr. 2018);.

    BELLO, Adesina Temitayo. Online Dispute Resolution Algorithm: The Artificial Intelligence Model as a Pinnacle, 84(2) Int’l J. Arb.

    Mediation & Dispute Mgmt. 159 (2018).

    BODEN, Margaret A. Artificial Intelligence: A Very Short Introduction 26–28 (Oxford University Press 2018).

    CASEY, Bryan; FARHANGI, Ashkon; VOGL, Roland. Rethinking Explainable Machines: The GDPR’s ‘Right to Explanation’ Debate

    and the Rise of Algorithmic Audits in Enterprise, 34:1 Berkeley Tech. L.J. 143 (2019).

    CITRON, Danielle Keats; PASQUALE, Frank. The Scored Society: Due Process for Automated Predictions, 89 Wash. L. Rev. 1 (2014).

    COHEN, Paul Cohen; NAPPERT, Sophie. The March of the Robots, Global Arb. Rev. (15 Feb. 2017).

    CORTÉS, Pablo; COLE, Tony. Legislating for an Effective and Legitimate System of Online Consumer Arbitration, in Arbitration in the

    Digital Age, n. 5, at 2009.

    DEDEO, Simon. Wrong Side of the Tracks: Big Data and Protected Categories (2015), https://arxiv.org/pdf/1412.4643v2.pdf (accessed

    April 2022)

    DEVINS, Neal; BRAUM, Lawrence. Split Definitive: How Party Polarization Turned the Supreme Court into a Partisan Court, 2016

    Sup. Ct. Rev. 301, 331 (2016).

    EBERHARDT, Pia, et al. Profiting from Injustice: HowLawFirms, Arbitrators and Financiers Are Fuelling an Investment Arbitration

    Boom 8 (Corporate Europe Observatory 2012).

    FLACH, Peter. Machine Learning: The Art and Science of Algorithms that Make Sense of Data 2 (Cambridge University Press 2012).

    FRANCK, Susan D. et al. Inside the Arbitrator’s Mind, 66 Emory L.J. 1115 (2017).

    GUIMERA, Roger; SALES-PRADO, Marta. Justice Blocks and Predictability of U.S. Supreme Court Votes, 6(11) PloS One (2011).

    GUTHRIE, Chris; RACHLINSKI; Jeffrey; WISTRICH, Andrew J. Inside the Judicial Mind, 86 Cornell L. Rev. 777 (2001).

    HANKE, Philip. Computers with Law Degrees? The Role of Artificial Intelligence in Transnational Dispute Resolution, and Its

    Implications of the Legal Profession, 14(2) Transnat’l Disp. Mgmt. 1 (2017).

    JETTEN, Lieke; SHARON, Stephen. Selected Issues Concerning the Ethical Use of Big Data Health Analytics 72 Wash. & Lee L. Rev.

    Online 486, 487 (2016).

    JOLLS, Christine; SUNSTEIN, Cass; THALER, Richard. A Behavioral Approach to Lawand Economics, 50 Stan. L. Rev. 1471 (1998);

    Avishalom Tor, The Methodology of the Behavioral Analysis of Law, 4 Haifa L. Rev. 237 (2008).

    KAHNEMAN, Daniel; TVERSKY Amos. Subjective Probability: A Judgment of Representativeness, 3 Cognitive Psychol. 430, 431

    (1972).

    KASPAROV, Gary. Deep Thinking: Where Machine Intelligence Ends and Human Creativity Begins (John Murray 2017).

    KATZ, Daniel M.; BOMMARITO, Michael J.; BLACKMAN, Josh. A General Approach for Predicting the Behavior of the Supreme

    Court of the United States, 12(4) PloS One (2017).

    KOSINSKI, Michal; WANG, Yilun. Deep Neural Networks Are More Accurate than Humans at Detecting Sexual Orientation from

    Facial Images, 114 J. Personality & Soc. Psychol. 246 (2018).

    LAURITSEN, Marc. Towards a Phenomenology of Machine-Assisted Legal Work, 1(2) J. Robotics, Artificial Intelligence & L. 67, 79

    (2018).

    LEGG, Shane; HUTTER, Marcus. A Collection of Definitions of Intelligence, 157 Frontiers in Artificial Intelligence & Applications 17

    (2007).

    LOHMAN, David F. Human Intelligence: An Introduction to Advances in Theory and Research, 59(4) Rev. Educational Res. 333 (1989).

    MACCORMICK, Neil. Legal Reasoning and Legal Theory x (Oxford Clarendon 1977).

    MADSEN, Mathias Winther. The Limits of Machine Translation 5–15 (2009) Master Thesis University of Copenhagen, http://vantagesiam.com/upload/casestudies/file/file-139694565.pdf, cited in Harry Surden, Machine Learning and the Law, 89 Wash. L. Rev. 87, 99

    (2014).

    MARTIN, Andrew D., et al. Competing Approaches to Predicting Supreme Court Decision Making, 2(4) Persp. Pol. 761 (2004).

    RUGER, Theodore W., et al. The Supreme Court Forecasting Project: Legal and Political Sciences Approaches to Predicting Supreme

    Court Decision making, 104 Colum. L. Rev. 1150 (2004).

    MARTIN, Emma. The Use of Technology in International Arbitration, in 40 Under 40 International Arbitration 337–48 (Carlos

    Gonzalez-Bueno ed., Wolters Kluwer 2018).

    MCCARTHY, John, et al. A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence (31 Aug. 1955), in Artificial

    Intelligence: What Everyone Needs to Know1 (Jerry Kaplan ed., Oxford University Press 2016), wwwformal.stanford.edu/jmc/history/dartmouth/dartmouth.html (accessed 15 April 2022).

    MILLER, Tim. Explanation in Artificial Intelligence: Insights from the Social Sciences, 267 Artificial Intelligence 1, at 17–18, 20 (2019).

    NAPPERT, Sophie. Disruption Is the NewBlack – Practical Thoughts on Keeping International Arbitration on Trend, (2) ICC Dispute

    Resolution Bulletin 20, 25–36 (2018).

    PAISLEY, Kathleen; SUSSMAN, Edna Sussman. Artificial Intelligence Challenges and Opportunities for International Arbitration,

    (1) NYSBA New York Dispute Resolution Lawyer 35 (Spring 2018).

    RADIN, Max. The Theory of Judicial Decision: Or HowJudges Think, 11 ABA J. 357, 362 (1925).

    SCHERER, Maxi. International Arbitration 3.0 – HowArtificial Intelligence Will Change Dispute Resolution, Austrian Y.B. Int’l Arb.

    (2019).

    SCHMITZ, Amy J. Building on OArb Attributes in Pursuit of Justice, in Arbitration in the Digital Age 182 (Maud Piers & Christian

    Aschauer eds, Cambridge University Press 2018).

    SIM, Christine. Will Artificial Intelligence Take over Arbitration?, 14(1) Asian Int’l Arb. J. 1 (2018).

    SMIT, Robert H. The Future of Science and Technology in International Arbitration: The Next Thirty Years, in The Evolution and Future

    of International Arbitration 365–78 (Wolters Kluwer 2016).

    SUSSKIND, Richard. Tomorrow’s Lawyers: An Introduction to Your Future (2d ed., Oxford University Press 2017).

    SUSSMAN, Edna. Biases and Heuristics in Arbitrator Decision-Making: Reflections on Howto Counteract or Play to Them, in The Roles

    of Psychology in International Arbitration (Tony Cole ed., Wolters Kluwer 2017).

    TEGMARK, Max. Life 3.0: Being Human in the Age of Artificial Intelligence, 24 et seq. (Knopf 2017).

    TVERSKY, Amos; KAHNEMAN, Daniel. Judgment Under Uncertainty: Heuristics and Biases, 185 Science 1124 (1974).

    UNCTAD, Investor-State Dispute Settlement: Reviewof Developments in 2016 1 (May 2017); UNCTAD, Investor-State Dispute

    Settlement: Reviewof Developments in 2017 1 (June 2018).

    URBAN SOARES, Francisco. New Technologies and Arbitration, VII(1) Indian J. Arb. L. 84 (2018).

    VANNIEUWENHUYSE, Gauthier. Arbitration and New Technologies: Mutual Benefits, 35 J. Int’l Arb. 119–29 (2018).

    WAHAB, Mohamad S. Abdel. Online Arbitration: Traditional Conceptions and Innovative Trends, in International Arbitration: The

    Coming of a New Age? ICCA Congress Series 17, 654–67 (Albert Jan van den Berg ed., Wolters Kluwer 2013).

Novos Estudos Jurí­dicos

A revista Novos Estudo Jurídicos (NEJ), Qualis A1 Direito, é um periódico científico quadrimestral, com publicações ininterruptas desde 1995, nos meses de Abril, Agosto e Dezembro. Sua missão é promover o aprimoramento dos estudos na área do Direito, especialmente nas seguintes linhas: “Constitucionalismo e Produção do Direito”, “Direito, Jurisdição e Inteligência Artificial” e “Direito Ambiental, Transnacionalidade e Sustentabilidade”.

A NEJ é um dos periódicos científicos da Universidade do Vale do Itajaí (UNIVALI) e está vinculado ao Programa de Pós-Graduação Stricto Sensu em Ciência Jurídica da UNIVALI (conceito CAPES 6), cursos de Mestrado e Doutorado.

O periódico oferece acesso livre e imediato ao seu conteúdo, seguindo o princípio de que disponibilizar gratuitamente o conhecimento científico ao público proporciona maior democratização mundial do conhecimento. 

A visão da revista Novos Estudo Jurídicos (NEJ) consiste na publicação de artigos e relatos de pesquisas inéditos de autoria de docentes, discentes e pesquisadores, estimulando os debates críticos e éticos sobre assuntos relacionados aos temas que compõem sua Linha Editorial.

Access journal